22
大学数学基礎解説
文献あり

テータ関数,イータ関数の特殊値を求める

3494
0
$$\newcommand{abs}[1]{\left |#1\right |} \newcommand{C}[0]{\mathbb{C}} \newcommand{Fourier}[2]{\mathcal{F}_{#1}\left [#2\right ]} \newcommand{Hartley}[2]{\mathcal{H}_{#1}\left [#2\right ]} \newcommand{Hilbert}[2]{\mathcal{Hil}_{#1}\left [#2\right ]} \newcommand{inttrans}[3]{\mathcal{#1}_{#2}\left [#3\right ]} \newcommand{invtrans}[3]{\mathcal{#1}^{-1}_{#2}\left [#3\right ]} \newcommand{Laplace}[2]{\mathcal{L}_{#1}\left [#2\right ]} \newcommand{Li}[0]{\operatorname{Li}} \newcommand{Mellin}[2]{\mathcal{M}_{#1}\left [#2\right ]} \newcommand{ord}[0]{\operatorname{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{Res}[1]{\underset{#1}{\operatorname{Res}}} \newcommand{tLaplace}[2]{\mathcal{B}_{#1}\left [#2\right ]} \newcommand{Weierstrass}[2]{\mathcal{W}_{#1}\left [#2\right ]} $$

$$ \begin {aligned} \sum_{n \in \mathbb Z}e^{-\pi n^{2}}&=\frac {\sqrt [4]{\pi }}{\Gamma \left (\frac {3}4\right )}\\ \prod _{n=1}^\infty \tanh \pi n&=\frac {\pi ^{1/4}}{2^{1/8}\Gamma \left (\frac {3}4\right )}\\ \sum _{n=1}^\infty \frac {1}{n(e^{2\pi n}-1)} &=\frac {\ln 2}2+\ln \Gamma \left (\frac {3}4\right )-\frac {\ln \pi }4-\frac {\pi }{12} \end {aligned} $$

いきなりですがこんな等式が成り立つらしいです。証明の手順をネットで探すのが結構大変だったので、この記事で纏めます。大雑把に纏めたので、定義や主張の詳しい条件は省略したりしています。また数日でかき集めた情報なので、間違ったことを書いている可能性があります。ご了承ください。

第一種完全楕円積分

$$ \begin {aligned} K(k)&=\int _{0}^{\frac {\pi }2}\frac {d\theta }{\sqrt {1-k^2\sin ^{2}\theta }}\\ &=\int _{0}^{1}\frac {dx}{\sqrt {(1-x^{2})(1-k^{2}x^{2})}} \end {aligned} $$

この$k$を母数と言います。特に指定が無い限り、$k'=\sqrt{1-k^2},K=K(k),K'=K(k')$と表すものとします。
代表的な特殊値として、

$$ \begin {aligned} K\left (\frac {1}{\sqrt 2}\right ) &=\frac {\pi ^{3/2}}{2\Gamma \left (\frac {3}4\right )^2} \end {aligned} $$

があります。

$$ \begin {aligned} K\left (\frac {1}{\sqrt 2}\right )&=\int _{0}^{\frac {\pi }2}\frac {d\theta }{\sqrt {1-\frac {\sin ^{2}\theta }2}}\\ &=\sqrt 2\int _{0}^{\frac {\pi }2}\frac {d\theta }{\sqrt{2-\sin ^{2}\theta }}\\ &=\sqrt 2\int _{0}^{\frac {\pi }2}\frac {d\theta }{\sqrt {1+\cos ^{2}\theta }}\\ &=\sqrt 2\int _{0}^{1}\frac {dx}{\sqrt {1-x^{4}}}\quad (x=\cos \theta )\\ &=\frac {\sqrt 2}4\int _{0}^{1}t^{\frac {1}4-1}(1-t)^{\frac {1}2-1}dt\quad (t=x^4)\\ &=2^{-3/2}B\left (\frac {1}4,\frac {1}2\right )\\ &=\frac {\Gamma \left (\frac {1}4\right )\Gamma \left (\frac {1}2\right )}{2^{3/2}\Gamma \left (\frac {3}4\right )}\\ &=\frac {\sqrt \pi }{2\sqrt 2}\frac {\pi }{\sin \frac {\pi }4}\frac {1}{\Gamma \left (\frac {3}4\right )^2}\\ &=\frac {\pi ^{3/2}}{2\Gamma \left (\frac {3}4\right )^2} \end {aligned} $$

算術幾何平均(AGM)

$a$$b$の算術幾何平均とは、簡単には算術平均$(a+b)/2$と幾何平均$\sqrt{ab}$を繰り返しとった時の収束先です。$a,b$は複素数とできますが、簡便のため、ここではどちらも正の実数とします。

$a,b>0$について
$$ a_0=a,b_0=b\\ a_{n+1}=\frac{a_n+b_n}2, b_{n+1}=\sqrt{a_nb_n} $$
と数列$\{a_n\},\{b_n\}$を定めればこれらは同じ値に収束するので、その値を$a,b$の算術幾何平均と呼び、$AGM(a,b)$と表記する。

これが良く定義できていることは、こちらで確認できます。
また算術幾何平均は第一種完全楕円積分で書くことができます。

$k'=\sqrt{1-k^2}$とするとき、
$$ \begin {aligned} AGM(1,k)&=\frac {\pi }{2K(k')} \end {aligned} $$

証明はこちらに書いてあります。

テータ関数

テータ関数

$$ \begin {aligned} \vartheta _2(q)&=\sum_{n \in \mathbb Z}q^{\left (n+\frac {1}2\right )^2}\\ \vartheta _3(q)&=\sum_{n \in \mathbb Z}q^{n^2}\\ \vartheta _4(q)&=\sum_{n \in \mathbb Z}q^{n^2}(-1)^n \end {aligned} $$

これらには豊富な関係式があり、特に以下が成り立ちます。

$$ \vartheta _2^4(q)+\vartheta _4^4(q)=\vartheta _3^4(q) $$

証明はこちらにあります。
また、テータ変換公式などと呼ばれる恒等式があります。

$\tau \tau'=-1$のとき
$$ \begin {aligned} \sum_{n \in \mathbb Z}e^{n^{2}\pi i\tau +2\pi ivn}&=\frac {1}{\sqrt {-i\tau }}\sum_{n \in \mathbb Z}e^{(n-v)^2\pi i\tau '} \end {aligned} $$

証明はこちらにあります。
テータ関数は第一種完全楕円積分とも関係があります。

$k=\frac {\vartheta _2^2(q)}{\vartheta _3^2(q)},k'=\sqrt{1-k^2}=\frac{\vartheta _4^2(q)}{\vartheta _3^2(q)},K=K(k),K'=K(k')$とするとき、
$$ \begin {aligned} \vartheta _3^2(q)&=\frac{1}{AGM(1,k')}=\frac {2K}\pi &(1)\\ q&=e^{-\pi K'/K}&(2) \end {aligned} $$

(1)の証明はこちらにあります。
ここで(2)を証明します。

$$ \begin {aligned} q&=e^{\pi i\tau },\tau '=-\frac {1}{\tau },q'=e^{\pi i\tau '}\\ \end{aligned} $$
とする。テータ変換公式より
$$ \begin{aligned} \frac {\vartheta _4(q)}{\vartheta _3(q)}&=\frac {\sum e^{n^2\pi i\tau +\pi i n}}{\sum e^{n^{2}\pi i\tau }}\\ &=\frac {\frac{1}{\sqrt {-i\tau }}\sum e^{\left( n-1/2\right )^{2}\pi i\tau '}}{\frac{1}{\sqrt {-i\tau }}\sum e^{n^{2}\pi i\tau '}}\\ &=\frac {\vartheta _2(q')}{\vartheta _3(q')} \\ K'&=K\left (\frac {\vartheta _4^2(q)}{\vartheta _3^2(q)}\right )\\ &=K\left (\frac {\vartheta _2^2(q')}{\vartheta _3^2(q')}\right )\\ &=\frac {\pi }2\vartheta _3^2(q')\\ &=\frac{\pi (-i\tau )}2\vartheta _3^2(q)\\ &=-i\tau K\\ i\tau &=-\frac {K'}K\\ q&=e^{-\pi \frac {K'}{K}}\ \boxed{} \end {aligned} $$

上述の(1),(2)を合わせて以下が成り立ちます。

$$ \begin {aligned} \vartheta _3(e^{-\pi K'/K})&=\sqrt {\frac {2K}\pi } \end {aligned} $$

これにより、$p>0$に対して$p=K'/K$となるような$k$を求めることが出来れば、$\vartheta _3(e^{-\pi p})$$K$で書けることになります。

$\vartheta _3(e^{-\pi})$を求めます。
まず$K'/K=1$となる$k$を探します。
$K=K'$より$k=k'=\frac 1{\sqrt 2}$が分かるので
$$ \begin {aligned} \vartheta _3(e^{-\pi})&=\sqrt {\frac {2K\left (\frac {1}{\sqrt 2}\right )}\pi }\\ &=\sqrt {\frac {2}\pi \frac {\pi ^{3/2}}{2\Gamma \left (\frac {3}4\right )^2}}\\ &=\frac {\sqrt [4]{\pi }}{\Gamma \left (\frac {3}4\right )} \end {aligned} $$
これは記事の最初で紹介した
$$ \sum_{n \in \mathbb Z}e^{-\pi n^{2}}=\frac {\sqrt [4]{\pi }}{\Gamma \left (\frac {3}4\right )} $$
です。

$K'/K=1$の場合は簡単に$k$を決定できましたが、一般の場合についての関数に名前がついているらしいです。

Modular lambda star function

$$ \begin {aligned} \frac {K(\sqrt {1-\lambda^*(x)^2})}{K(\lambda^*(x))}&=\sqrt x \end {aligned} $$

概容はこちらをご覧ください。
どうやら$x$が正の有理数のとき$\lambda^*(x)$は代数的数になり、$K(\lambda^*(x))$はガンマ関数のclosed formで書けるらしいです。へぇ~
Wikipediaにこんな関係式が載っていたので示してみます。

$$ \begin {aligned} \lambda^*(4x)&=\frac {1-\sqrt {1-\lambda^*(x)^2}}{1+\sqrt {1-\lambda^*(x)^2}} \end {aligned} $$

$\lambda ^*(x)=k$とすることで、定理の主張は次のように言い換えられます:

$$ l=\frac {1-k'}{1+k'},l'=\sqrt {1-l^2}, L=K(l),L'=K(l') $$
のとき
$$ \frac {L'}L=2\frac{K'}K $$

$$ \begin{aligned} \frac {L'}{L}&=\frac {AGM(1,l')}{AGM(1,l)}\\ &=\frac {AGM(1+l,1-l)}{AGM(1,l)}\\ &=\frac {AGM\left (\frac {2}{1+k'},\frac {2k'}{1+k'}\right )}{AGM\left (1,\frac {1-k'}{1+k'}\right )}\\ &=2\frac {AGM(1,k')}{AGM(1+k',1-k')}\\ &=2\frac {AGM(1,k')}{AGM(1,k)}\\ &=2\frac {K'}{K}\ \boxed{} \end {aligned} $$

$\vartheta _3(e^{-2\pi}),\vartheta _4(e^{-2\pi})$を求めます。
$K'/K=1$となるのは$k=\frac 1{\sqrt2}$のときですから、$L'/L=2$となるのは
$$ l=\frac{1-k'}{1+k'}=\frac{\sqrt 2-1}{\sqrt 2+1} $$
のときです。
$$ \begin {aligned} \vartheta _3^2(e^{-2\pi })&=\frac {1}{AGM(1,l')}\\ &=\frac {1}{AGM(1+l,1-l)}\\ &=\frac {1}{AGM\left (\frac {2}{1+k'},\frac {2k'}{1+k'}\right )}\\ &=\frac {1+k'}{2}\frac {1}{AGM(1,k')}\\ &=\frac {1+k'}\pi K(k)\\ &=\frac {1+\frac {1}{\sqrt 2}}{\pi }K\left (\frac {1}{\sqrt 2}\right )\\ &=\frac {1+\sqrt 2}{\sqrt 2\pi }\frac {\pi ^{3/2}}{2\Gamma \left (\frac {3}4\right )^{2}}\\ &=\frac {1+\sqrt 2}{2^{3/2}}\frac {\sqrt \pi }{\Gamma \left (\frac {3}4\right )^2}\\ \vartheta _3(e^{-2\pi })&=\frac {\sqrt {1+\sqrt 2}}{2^{3/4}}\frac {\pi ^{1/4}}{\Gamma \left (\frac {3}4\right )}\\ \vartheta _4(e^{-2\pi })&=\frac {\vartheta _4(e^{-2\pi })}{\vartheta _3(e^{-2\pi })}\vartheta _3(e^{-2\pi })\\ &=\sqrt {l'}\vartheta _3(e^{-2\pi })\\ &=\sqrt[4] {1-\left (\frac {\sqrt 2-1}{\sqrt 2+1}\right )^2}\vartheta _3(e^{-2\pi })\\ &=\frac {\sqrt [4]{4\sqrt 2}}{\sqrt {1+\sqrt 2}}\cdot \frac {\sqrt {1+\sqrt 2}}{2^{3/4}}\frac {\pi ^{1/4}}{\Gamma \left (\frac {3}4\right )}\\ &=\frac {\pi ^{1/4}}{2^{1/8}\Gamma \left (\frac {3}4\right )} \end {aligned} $$

ヤコビの三重積

無限和と無限積を変換してくれるのがヤコビの三重積です。

ヤコビの三重積

$$ \begin {aligned} \sum_{n \in \mathbb Z}q^{n^2}z^n&=\prod _{n=1}^\infty (1-q^{2n})(1+q^{2n-1}z)(1+q^{2n-1}z^{-1}) \end {aligned} $$

こちらの記事

に証明を書きました。

これを使うとこの記事の最初に紹介した無限積が求まります。

$$ \begin {aligned} \prod _{n=1}^\infty \tanh n\pi &=\prod _{n=1}^\infty \frac {1-e^{-2n\pi }}{1+e^{-2n\pi }}\\ &=\prod _{n=1}^\infty \frac {1-q^n}{1+q^n}\quad \left (q=e^{-2\pi }\right )\\ &=\prod _{n=1}^\infty \frac {(1-q^{n})^2}{1-q^{2n}}\\ &=\prod _{n=1}^\infty \frac {(1-q^{2n-1})^2(1-q^{2n})^2}{1-q^{2n}}\\ &=\prod _{n=1}^\infty (1-q^{2n})(1-q^{2n-1})(1-q^{2n-1})\\ &=\sum_{n \in \mathbb Z}q^{n^2}(-1)^n\\ &=\vartheta _4(q)\\ &=\frac {\pi ^{1/4}}{2^{1/8}\Gamma \left (\frac {3}4\right )}. \end {aligned} $$

この例の途中で使った(とも言える)無限積の変換に名前がついているので紹介します。非常に有効なテクニックで、ヤコビの三重積の証明などでも使えます。

オイラーの分割恒等式

$$ \begin {aligned} \prod _{n=1}^\infty (1-x^{2n-1})&=\prod _{n=1}^\infty \frac {1}{1+x^{n}} \end {aligned} $$

$$ \begin {aligned} \prod _{n=1}^\infty (1-x^{2n-1})&=\prod _{n=1}^\infty \frac {\textcolor {blue}{(1-x^{2n-1})(1-x^{2n})}}{1-x^{2n}}\\ &=\prod _{n=1}^\infty \frac {\textcolor {blue}{1-x^{n}}}{1-x^{2n}}\\ &=\prod _{n=1}^\infty \frac {1}{1+x^{n}}\,\boxed{} \end {aligned} $$

なぜ"分割"という単語が入っているのかについてはこちらをご覧ください。

イータ関数

デデキントのイータ関数

$$ \begin {aligned} \eta (\tau )&=e^{\pi i\tau /12}\prod _{n=1}^\infty \left (1-e^{2\pi i\tau n}\right )&\Im \tau >0 \end {aligned} $$

※ディリクレのイータ関数とは全くの別物です。
ヤコビの三重積とオイラーの分割恒等式を使って、イータ関数をテータ関数で表します。

$$ \begin {aligned} \eta^3(\tau)&=\frac {1}2\vartheta _2(q)\vartheta _3(q)\vartheta _4(q)&q=e^{\pi i\tau } \end {aligned} $$

$$ \begin {aligned} \eta^3(\tau)&=e^{\pi i\tau /4}\prod _{n=1}^\infty (1-e^{2\pi i\tau n})^3\\ &=q^{1/4}\prod _{n=1}^\infty (1-q^{2n})^3\\ &=q^{1/4}\prod _{n=1}^\infty\left (1-q^{2n}\right ) ^3\left (1+q^{2n}\right )^2(1-q^{2(2n-1)})^2\\ &=q^{1/4}\prod _{n=1}^\infty \textcolor {purple}{\left (1-q^{2n}\right )^3}\textcolor {blue}{\left (1+q^{2n}\right )^2}\textcolor {green}{\left (1+q^{2n-1}\right )^2}\textcolor {red}{\left (1-q^{2n-1}\right )^2}\\ &=\textcolor {blue}{\frac {1}2}q^{1/4}\prod _{n=1}^\infty \textcolor {purple}{\left (1-q^{2n}\right )}\textcolor {blue}{\left (1+q\cdot q^{2n-1}\right )\left (1+q^{-1}q^{2n-1}\right )}\\ &\quad \cdot \prod _{n=1}^\infty \textcolor {purple}{\left (1-q^{2n}\right )}\textcolor {green}{\left (1+q^{2n-1}\right )\left (1+q^{2n-1}\right )}\\ &\quad \cdot \prod _{n=1}^\infty \textcolor{purple}{\left (1-q^{2n}\right )}\textcolor {red}{\left (1-q^{2n-1}\right )\left (1-q^{2n-1}\right )}\\ &=\left (\frac {1}2\sum_{n \in \mathbb Z}q^{n^2}q^{n}q^{1/4}\right )\left (\sum_{n \in \mathbb Z}q^{n^{2}}\right )\left (\sum_{n \in \mathbb Z}q^{n^{2}}(-1)^{n}\right )\\ &=\frac {1}2\vartheta _2(q)\vartheta _3(q)\vartheta _4(q)\ \boxed{} \end {aligned} $$

今までの内容を用いて、イータ関数を第一種完全楕円積分で表します。

$$ \begin {aligned} \eta\left (i\frac {K'}{K}\right )&=\sqrt [6]{2kk'}\sqrt {\frac {K}\pi } \end {aligned} $$

$q=e^{-\pi K'/K}$とおく。
$$ \begin {aligned} \eta\left (i\frac {K'}{K}\right )&=\sqrt [3]{\frac {1}2\vartheta _2(q)\vartheta _3(q)\vartheta _4(q)}\\ &=2^{-1/3}\vartheta _3(q)\sqrt [3]{\frac {\vartheta _2(q)}{\vartheta _3(q)}\frac {\vartheta _4(q)}{\vartheta _3(q)}}\\ &=2^{-1/3}\sqrt {\frac {2K}\pi }\sqrt[3] {\sqrt k\sqrt {k'}}\\ &=\sqrt[6] {2kk'}\sqrt {\frac {K}\pi }\ \boxed{} \end {aligned} $$

$\eta(i)$を求めます。$K'/K=1$より$k=k'=\frac{1}{\sqrt 2}$なので
$$ \begin {aligned} \eta(i)&=\sqrt [6]{2\frac {1}{\sqrt 2}\frac {1}{\sqrt 2}}\sqrt {\frac {K\left (\frac {1}{\sqrt 2}\right )}\pi }\\ &=\sqrt {\frac {1}\pi \frac {\pi ^{3/2}}{2\Gamma \left (\frac {3}4\right )^2}}\\ &=\frac {\sqrt[4] {\pi }}{\sqrt 2\Gamma \left (\frac {3}4\right )} \end {aligned} $$
更に、冒頭で紹介した級数を計算できます。
$$ \begin {aligned} \sum _{n=1}^\infty \frac {1}{n(e^{2\pi n}-1)} &=\sum _{n=1}^\infty \frac {1}n\sum _{m=1}^\infty e^{-2\pi nm}\\ &=\sum _{m=1}^\infty \sum _{n=1}^\infty \frac {e^{-2\pi mn}}n\\ &=-\sum _{m=1}^\infty \ln \left (1-e^{-2\pi m}\right )\\ &=-\ln \left (\prod _{m=1}^\infty \left (1-e^{-2\pi m}\right )\right )\\ &=-\ln \left (e^{\pi /12}\eta(i)\right )\\ &=-\ln \left (\frac {e^{\pi /12}\pi ^{1/4}}{2^{1/2}\Gamma \left (\frac {3}4\right )}\right )\\ &=\frac {\ln 2}2+\ln \Gamma \left (\frac {3}4\right )-\frac {\ln \pi }4-\frac {\pi }{12} \end {aligned} $$

テータ関数の特殊値にガンマ関数が現れましたが、比を取ることで代数的数になったりします。以下の定理が成り立ちます。

$\tau=i\frac{K'}{K}$のとき
$$ \begin{aligned} \frac {\eta^6(2\tau )}{\eta^6(\tau )} &=\frac {1}4kk'^{-1/2} \end{aligned} $$

$q=e^{-\pi i \tau}$とおく。
ヤコビの三重積より
$$ \begin {aligned} \frac {\vartheta _2(q^2)\vartheta _3(q^2)}{\vartheta _2^2(q)} &=\frac {q^{1/2}\displaystyle \sum_{n ,m\in \mathbb Z}q^{2(n^2+n+m^2)}}{q^{1/2}\displaystyle \left (\sum_{n \in \mathbb Z}q^{n^2+n}\right )^2}\\ &=\prod _{n=1}^\infty \frac {\left (1-q^{4n}\right )\left (1+q^{4n}\right )\left (1+q^{4n-4}\right )\cdot \left (1-q^{4n}\right )\left (1+q^{4n-2}\right )^2}{\left (1-q^{2n}\right )^2\left (1+q^{2n}\right )^2\left (1+q^{2n-2}\right )^2}\\ &=\frac {1}2\prod _{n=1}^\infty \frac {\left (1-q^{4n}\right )^2\cdot \left (1+q^{4n}\right )^2\left (1+q^{4n-2}\right )^2}{\left (1-q^{2n}\right )^2\left (1+q^{2n}\right )^2\cdot \left (1+q^{2n}\right )^2}\\ &=\frac {1}2\prod _{n=1}^\infty \frac {\left (1+q^{2n}\right )^2}{\left (1+q^{2n}\right )^2}\\ &=\frac {1}2 \end {aligned} $$
が成り立つので、
$$ \begin{aligned} \frac {\eta^6(2\tau )}{\eta^6(\tau )} &=\frac {\vartheta _2^2(q^2)\vartheta _3^2(q^2)\vartheta _4^2(q^2)}{\vartheta _2^2(q)\vartheta _3^2(q)\vartheta _4^2(q)}\\ &=\frac {\vartheta _2^2(q)}{\vartheta _3^2(q)}\frac {\vartheta _3(q)}{\vartheta _4(q)}\frac {\vartheta _2^2(q^2)\vartheta _3^2(q^2)\vartheta _4^2(q^2)}{\vartheta _2^4(q)\vartheta _3(q)\vartheta _4(q)}\\ &=kk'^{-1/2}\frac {\vartheta _2^2(q^2)\vartheta _3^2(q^2)}{\vartheta _2^4(q)}\\ &=\frac {1}4kk'^{-1/2}\ \boxed{} \end{aligned} $$

以下が従います。

$q=e^{-\pi K'/K}$のとき
$$ \begin {aligned} \prod _{n=1}^\infty (1+q^{2n})^6 &=\frac {1}4q^{-1/2}kk'^{-1/2} \end {aligned} $$

$\tau = i\frac{K'}K$として
$$ \begin {aligned} \prod _{n=1}^\infty (1+q^{2n})^6&=\left (\prod _{n=1}^\infty \frac {1-q^{4n}}{1-q^{2n}}\right )^6\\ &=q^{-1/2}\frac {\eta^6(2\tau )}{\eta^6(\tau )}\quad \left (q=e^{\pi i\tau }\right )\\ &=\frac {1}4q^{-1/2}kk'^{-1/2}. \end {aligned} $$

$$ \begin {aligned} \prod _{n=1}^\infty \left (1+e^{-2\pi n}\right ) &=\prod _{n=1}^\infty \left (1+q^{2n}\right )\quad \left (k=\frac {1}{\sqrt 2},q=e^{-\pi K'/K}\right )\\ &=\left (\frac {1}4e^{\frac {\pi }2}\left (\frac {1}{\sqrt 2}\right )\left (\frac {1}{\sqrt 2}\right )^{-1/2}\right )^{1/6}\\ &=e^{\pi /12}2^{-3/8} \end {aligned} $$

参考文献

投稿日:2022420
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

便利
便利
277
58596
引き算が苦手です

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. 第一種完全楕円積分
  2. 算術幾何平均(AGM)
  3. テータ関数
  4. ヤコビの三重積
  5. イータ関数
  6. 参考文献