最近見つけたイカツイ積分の解き方
詳細な説明は俺は苦手なので明日辺りには こいつ から記事が上がってることでしょう(圧)〜〜〜 仕事早くて助かるなぁ、その日中に上がったよ 〜〜〜
In=∫0πsin2nx(1−2rcosx+r2)n+1dxIn+2=∫0πsin2(n+1)x(1−2rcosx+r2)n+2⋅sin2x1−2rcosx+r2dx=−12r(n+2)∫0π−2r(n+2)sinx(1−2rcosx+r2)n+3⋅sin2(n+1)+1x dx=−12r(n+2)[1(1−2rcosx+r2)n+2⋅sin2(n+1)+1x]0π+2(n+1)+12r(n+2)∫0π1(1−2rcosx+r2)n+2⋅sin2(n+1)xcosx dx=2(n+1)+12r(n+2)∫0π1(1−2rcosx+r2)n+2⋅sin2(n+1)xcosx dx=2(n+1)+12r(n+2)12r(n+1)∫0π1(1−2rcosx+r2)n+1⋅sin2nx((2n+1)cos2x−sin2x) dx=2(n+1)+12r(n+2)2n+12r(n+1)In−2(n+1)+12r(n+2)2(n+1)2r(n+1)∫0π1(1−2rcosx+r2)n+1⋅sin2(n+1)x dx=2(n+1)+12r(n+2)2n+12r(n+1)In−2(n+1)+12r(n+2)1r(r2+1)In+1+2(n+1)+12r(n+1)1r2r∫0π1(1−2rcosx+r2)n+2⋅sin2(n+1)xcosx dx=2(n+1)+12r(n+2)2n+12r(n+1)In−2(n+1)+12r(n+2)1r(r2+1)In+1+2In+2とI1=∫0πsin2t(r2−2rcost+1)2dt=12r∫0πcostr2−2rcost+1dt=14r2∫0π(r2+1r2−2rcost+1−1)dt4r2I1=(r2+1)I0−πI0=∫0π1r2−2rcost+1dt=∫0∞1r2+1−2r1−t21+t221+t2dt=2∫0∞1(1−r)2t2+(1+r)2dt=2|1+r||1−r|1|1+r|2∫0∞1t2+1dt=π|1−r2|=π1−r2[|r|<1]orπr2−1[|r|>1]I1=14r2(1+r2±(1−r2)π−π)=12π1−r2or12r2πr2−1
まで解いた。
以下奴の処理の場合の場合In+2=2(n+1)+12r(n+2)2n+12r(n+1)In−2(n+1)+12r(n+2)1r(r2+1)In+1+2In+2r2In+2=2(n+1)+12(n+2)(r2+1)In+1−2(n+1)+12(n+2)2n+12(n+1)Inr2(In+2−2(n+1)+12(n+2)In+1)=2(n+1)+12(n+2)(In+1−2n+12(n+1)In)(In+2−2(n+1)+12(n+2)In+1)=(2n+3)(2n+4)(n+2)24r2(In+1−2n+12(n+1)In)(In+1−2n+12(n+1)In)=1(2r)2n(2n+1)!n!(n+1)!(I1−12I0)|r|<1の場合In+1−2n+12(n+1)In=0In=(2n)!22n(n!)2I0=π22n(1−r2)(2nn)|r|>1の場合In+1−2n+12(n+1)In=12πr2−11(2r)2n(2n+1)!n!(n+1)!(1r2−1)=2π(2r)2n+2(2n+1)!n!(n+1)!In+1−(2n+1)(2n+2)4(n+1)2In=π(2r)2n+2(2(n+1))!((n+1)!)2In+1−4−(n+1)(2(n+1)n+1)4−n(2nn)In=πr2n+24−(n+1)(2(n+1)n+1)14−(n+1)(2(n+1)n+1)In+1−14−n(2nn)In=πr2n+214−n(2nn)In=I0+π∑k=1n1r2k14−n(2nn)In=πr2−1+π1−1r2n1−r2In=π(2r)2n(r2−1)(2nn)
結論として
∫0πsin2nx(1−2rcosx+r2)n+1dx={π22n(1−r2)(2nn)|r|<1π(2r)2n(r2−1)(2nn)|r|>1undefinedr=±1
追記In=∫0πsin2n+1t(r2−2rcost+1)n+1cos4t2dt=∫0πsint(r2−2rcost+1)n+1⋅sin2ntcos4t2dt=12rn∫0π1(r2−2rcost+1)n⋅sin2n−1t(2ncos4t2cost−2sintcos3t2sint2)dt=1rn∫0π1(r2−2rcost+1)n⋅sin2n−1t((n+1)cos4t2cost−cos4t2)dt=−1rnIn−1+n+1rn∫0πsint(r2−2rcost+1)n⋅sin2n−2tcos4t2costdt=−1rnIn−1+n+12r2n(n−1)∫0π1(r2−2rcost+1)n−1⋅sin2n−3t(2(n−1)cos4t2cos2t−2sintcos3t2sint2cost−sin2tcos4t2)dt=−1rnIn−1+n+12r2n(n−1)∫0π1(r2−2rcost+1)n−1⋅sin2n−3tcos4t2(2n−(2n+1)sin2t−2cost)dt=−1rnIn−1+n+1r2(n−1)In−2−(n+1)(2n+1)2r2n(n−1)∫0π1(r2−2rcost+1)n−1⋅sin2n−1tcos4t2dt−n+1r2n(n−1)∫0π1(r2−2rcost+1)n−1⋅sin2n−3tcos4t2costdt=−1rnIn−1+n+1r2(n−1)In−2−(n+1)(2n+1)2r2n(n−1)(r2+1)In−1−(n+1)(2n+1)2r2n(n−1)2r∫0π1(r2−2rcost+1)n−2⋅sin2n−1tcos4t2costdt−n+1r2n(n−1)∫0π1(r2−2rcost+1)n−1⋅sin2n−3tcos4t2costdt=−1rnIn−1+n+1r2(n−1)In−2−(n+1)(2n+1)2r2n(n−1)(r2+1)In−1−(n+1)(2n+1)2r2n(n−1)2r(rnn+1In+1n+1In−1)−n+1r2n(n−1)(r(n−1)nIn−1+1nIn−2)とか応用も効く手法のようだが見ての通り漸化式が気持ちわるいのでこだわりでもなけりゃ この記事 のように近道しましょう。
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。