前回の記事 で, Rahmanによる積分12π∫−11|(e2iθ,abcsteiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)∞|2dx1−x2=(abcs,abct,abst,acst,bcst;q)∞(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞,x=cosθを示した. それを用いて, 以下の一般化を示す.
ABCq=(abcst)2のとき,12π∫−11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)∞|2dx1−x2=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2,abct,abst,acst,bcst;q)∞(abcst2,Aq/abcst2,abcst2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[abcst2/q,qabcst2/q,−qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,−abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)∞(abcst2/BC,A2q2/abcst2,abcst2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)∞⋅10ϕ9[A2q/abcst2,qA2q/abcst2,−qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,−A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]が成り立つ. ただし, x=cosθである.
ABCq=(abcst)2として, non-terminating Jacksonの8ϕ7和公式 より,8ϕ7[abcst2/q,qabcst2/q,−qabcst2/q,A,B,C,teiθ,te−iθabcst2/q,−abcst2/q,abcst2/A,abcst2/B,abcst2/C,abcsteiθ,abcste−iθ;q]+(Aq/B,Aq/C,Aqeiθ/t,Aqe−iθ/t,abcst2,B,C,teiθ,te−iθ,Aq/abcst2;q)∞(A2q2/abcst2,ABq/abcst2,ACq/abcst2,Aqeiθ/abcst,Aqe−iθ/abcst;q)∞⋅1(abcst2/B,abcst2/C,abcsteiθ,abcste−iθ,abcst2/Aq;q)∞⋅8ϕ7[A2q/abcst2,qA2q/abcst2,−qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aqteiθ/abcst,Aqe−iθ/abcstA2q/abcst2,−A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aqeiθ/t,Aqe−iθ/t;q]=(abcst2,Aq/abcst2,abcst2/BC,abcsteiθ/B,abcste−iθ/B,abcsteiθ/C,abcste−iθ/C,abcs;q)∞(abcst2/B,abcst2/C,abcsteiθ,abcste−iθ,ABq/abcst2,ACq/abcst2,Aqeiθ/abcst,Aqe−iθ/abcst;q)∞ここで, これに12π|(e2iθ,abcsteiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)∞|211−x2を掛けて積分すると,12π∫−11|(e2iθ,abcsteiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)∞|2(teiθ,te−iθ;q)r(abcsteiθ,abcste−iθ;q)rdx1−x2=(abcs,abct,abst,acst,bcst;q)∞(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞(at,bt,ct,st;q)r(abct,abst,acst,bcst;q)r12π∫−11|(e2iθ,abcsteiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)∞|2(Aqeiθ/t,Aqe−iθ/t,teiθ,te−iθ;q)∞(Aqeiθ/abcst,Aqe−iθ/abcst,abcsteiθ,abcste−iθ;q)∞⋅(Aqeiθ/abcst2,Aqe−iθ/abcst2;q)r(Aqeiθ/t,Aqe−iθ/t;q)rdx1−x2=12π∫−11|(e2iθ,Aqr+1eiθ/t;q)∞(aeiθ,beiθ,ceiθ,seiθ,Aqr+1eiθ/abcst;q)∞|2dx1−x2=(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)∞(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)∞⋅(Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)r(Aq/at,Aq/bt,Aq/ct,Aq/st;q)rが成り立つから,
12π(abcst2,Aq/abcst2,abcst2/BC,abcs;q)∞(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)∞∫−11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)∞|2dx1−x2=(abcs,abct,abst,acst,bcst;q)∞(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[abcst2/q,qabcst2/q,−qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,−abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(Aq/B,Aq/C,abcst2,B,C,Aq/abcst2;q)∞(A2q2/abcst2,ABq/abcst2,ACq/abcst2,abcst2/B,abcst2/C,abcst2/Aq;q)∞⋅(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)∞(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)∞⋅10ϕ9[A2q/abcst2,qA2q/abcst2,−qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,−A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]より,12π∫−11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)∞|2dx1−x2=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)∞(abcst2,Aq/abcst2,abcst2/BC,abcs;q)∞(abcs,abct,abst,acst,bcst;q)∞(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[abcst2/q,qabcst2/q,−qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,−abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)∞(abcst2,Aq/abcst2,abcst2/BC,abcs;q)∞⋅(Aq/B,Aq/C,abcst2,B,C,Aq/abcst2;q)∞(A2q2/abcst2,ABq/abcst2,ACq/abcst2,abcst2/B,abcst2/C,abcst2/Aq;q)∞⋅(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)∞(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)∞⋅10ϕ9[A2q/abcst2,qA2q/abcst2,−qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,−A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2,abct,abst,acst,bcst;q)∞(abcst2,Aq/abcst2,abcst2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[abcst2/q,qabcst2/q,−qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,−abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]⋅(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)∞(abcst2/BC,A2q2/abcst2,abcst2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)∞⋅10ϕ9[A2q/abcst2,qA2q/abcst2,−qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,−A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]となって定理が示された.
u=Aq/abcst,v=abcst/B,w=abcst/Cとして, A,B,Cを消去すると12π∫−11|(e2iθ,veiθ,weiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ,ueiθ;q)∞|2dx1−x2=(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)∞(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[vwt/uq,qvwt/uq,−qvwt/uq,vw/q,w/u,v/u,at,bt,ct,stvwt/uq,−vwt/uq,tq/u,vt,wt,abct,abst,acst,bcst;q]+(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)∞(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)∞⋅10ϕ9[uvw/tq,quvw/tq,−quvw/tq,vw/q,w/t,v/t,au,bu,cu,suuvw/tq,−uvw/tq,uq/t,vu,wu,abcu,absu,acsu,bcsu;q]となって右辺がt,uに関して対称的な形になり, 条件はabcstu=vwとなる. 以下に定理として書いておく.
abcstu=vwのとき,12π∫−11|(e2iθ,veiθ,weiθ;q)∞(aeiθ,beiθ,ceiθ,seiθ,teiθ,ueiθ;q)∞|2dx1−x2=(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)∞(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)∞⋅10ϕ9[vwt/uq,qvwt/uq,−qvwt/uq,vw/q,w/u,v/u,at,bt,ct,stvwt/uq,−vwt/uq,tq/u,vt,wt,abct,abst,acst,bcst;q]+(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)∞(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)∞⋅10ϕ9[uvw/tq,quvw/tq,−quvw/tq,vw/q,w/t,v/t,au,bu,cu,suuvw/tq,−uvw/tq,uq/t,vu,wu,abcu,absu,acsu,bcsu;q]が成り立つ.
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。