前回の記事
で, Rahmanによる積分
\begin{align}
\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}},\qquad x=\cos\theta
\end{align}
を示した. それを用いて, 以下の一般化を示す.
$ABCq=(abcst)^2$のとき,
\begin{align}
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2,abct,abst,acst,bcst;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\
&\qquad+\frac{(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(abcst^2/BC,A^2q^2/abcst^2,abcst^2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q
\end{align}
が成り立つ. ただし, $x=\cos\theta$である.
$ABCq=(abcst)^2$として,
non-terminating Jacksonの${}_8\phi_7$和公式
より,
\begin{align}
&\Q87{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,te^{i\theta},te^{-i\theta}}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta}}q\\
&\qquad+\frac{(Aq/B,Aq/C,Aqe^{i\theta}/t,Aqe^{-i\theta}/t,abcst^2,B,C,te^{i\theta},te^{-i\theta},Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst;q)_{\infty}}\\
&\qquad\cdot\frac 1{(abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta},abcst^2/Aq;q)_{\infty}}\\
&\qquad\cdot\Q87{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aqte^{i\theta}/abcst,Aqe^{-i\theta}/abcst}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aqe^{i\theta}/t,Aqe^{-i\theta}/t}q\\
&=\frac{(abcst^2,Aq/abcst^2,abcst^2/BC,abcste^{i\theta}/B,abcste^{-i\theta}/B,abcste^{i\theta}/C,abcste^{-i\theta}/C,abcs;q)_{\infty}}{(abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta},ABq/abcst^2,ACq/abcst^2,Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst;q)_{\infty}}
\end{align}
ここで, これに
\begin{align}
\frac 1{2\pi}\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\frac{1}{\sqrt{1-x^2}}
\end{align}
を掛けて積分すると,
\begin{align}
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{(te^{i\theta},te^{-i\theta};q)_r}{(abcste^{i\theta},abcste^{-i\theta};q)_r}\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\frac{(at,bt,ct,st;q)_r}{(abct,abst,acst,bcst;q)_r}\\
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{(Aqe^{i\theta}/t,Aqe^{-i\theta}/t,te^{i\theta},te^{-i\theta};q)_{\infty}}{(Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst,abcste^{i\theta},abcste^{-i\theta};q)_{\infty}}\\
&\qquad\cdot\frac{(Aqe^{i\theta}/abcst^2,Aqe^{-i\theta}/abcst^2;q)_r}{(Aqe^{i\theta}/t,Aqe^{-i\theta}/t;q)_r}\frac{dx}{\sqrt{1-x^2}}\\
&=\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},Aq^{r+1}e^{i\theta}/t;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},Aq^{r+1}e^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\
&\qquad\cdot\frac{(Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_r}{(Aq/at,Aq/bt,Aq/ct,Aq/st;q)_r}
\end{align}
が成り立つから,
\begin{align}
&\frac 1{2\pi}\frac{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\
&\qquad+\frac{(Aq/B,Aq/C,abcst^2,B,C,Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,abcst^2/B,abcst^2/C,abcst^2/Aq;q)_{\infty}}\\
&\qquad\cdot\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q
\end{align}
より,
\begin{align}
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\
&\qquad+\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}\\
&\qquad\cdot\frac{(Aq/B,Aq/C,abcst^2,B,C,Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,abcst^2/B,abcst^2/C,abcst^2/Aq;q)_{\infty}}\\
&\qquad\cdot\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q\\
&=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2,abct,abst,acst,bcst;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\
&\qquad\cdot\frac{(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(abcst^2/BC,A^2q^2/abcst^2,abcst^2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q
\end{align}
となって定理が示された.
$u=Aq/abcst, v=abcst/B, w=abcst/C$として, $A,B,C$を消去すると
\begin{align}
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},ve^{i\theta},we^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},ue^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)_{\infty}}{(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{vwt/uq,q\sqrt{vwt/uq},-q\sqrt{vwt/uq},vw/q,w/u,v/u,at,bt,ct,st}{\sqrt{vwt/uq},-\sqrt{vwt/uq},tq/u,vt,wt,abct,abst,acst,bcst}q\\
&\qquad+\frac{(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)_{\infty}}{(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{uvw/tq,q\sqrt{uvw/tq},-q\sqrt{uvw/tq},vw/q,w/t,v/t,au,bu,cu,su}{\sqrt{uvw/tq},-\sqrt{uvw/tq},uq/t,vu,wu,abcu,absu,acsu,bcsu}q
\end{align}
となって右辺が$t,u$に関して対称的な形になり, 条件は$abcstu=vw$となる. 以下に定理として書いておく.
$abcstu=vw$のとき,
\begin{align}
&\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},ve^{i\theta},we^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},ue^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\
&=\frac{(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)_{\infty}}{(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\
&\qquad\cdot\Q{10}{9}{vwt/uq,q\sqrt{vwt/uq},-q\sqrt{vwt/uq},vw/q,w/u,v/u,at,bt,ct,st}{\sqrt{vwt/uq},-\sqrt{vwt/uq},tq/u,vt,wt,abct,abst,acst,bcst}q\\
&\qquad+\frac{(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)_{\infty}}{(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)_{\infty}}\\
&\qquad\cdot\Q{10}9{uvw/tq,q\sqrt{uvw/tq},-q\sqrt{uvw/tq},vw/q,w/t,v/t,au,bu,cu,su}{\sqrt{uvw/tq},-\sqrt{uvw/tq},uq/t,vu,wu,abcu,absu,acsu,bcsu}q
\end{align}
が成り立つ.