1
現代数学解説
文献あり

Rahmanの超幾何積分

85
0
$$\newcommand{bk}[0]{\boldsymbol{k}} \newcommand{bl}[0]{\boldsymbol{l}} \newcommand{BQ}[5]{{}_{#1}\psi_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{calA}[0]{\mathcal{A}} \newcommand{calS}[0]{\mathcal{S}} \newcommand{CC}[0]{\mathbb{C}} \newcommand{F}[5]{{}_{#1}F_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{inv}[0]{\mathrm{inv}} \newcommand{maj}[0]{\mathrm{maj}} \newcommand{ol}[0]{\overline} \newcommand{Q}[5]{{}_{#1}\phi_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{QQ}[0]{\mathbb{Q}} \newcommand{ZZ}[0]{\mathbb{Z}} $$

前回の記事 で, Rahmanによる積分
\begin{align} \frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}},\qquad x=\cos\theta \end{align}
を示した. それを用いて, 以下の一般化を示す.

Rahman(1986)

$ABCq=(abcst)^2$のとき,
\begin{align} &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2,abct,abst,acst,bcst;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\ &\qquad+\frac{(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(abcst^2/BC,A^2q^2/abcst^2,abcst^2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q \end{align}
が成り立つ. ただし, $x=\cos\theta$である.

$ABCq=(abcst)^2$として, non-terminating Jacksonの${}_8\phi_7$和公式 より,
\begin{align} &\Q87{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,te^{i\theta},te^{-i\theta}}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta}}q\\ &\qquad+\frac{(Aq/B,Aq/C,Aqe^{i\theta}/t,Aqe^{-i\theta}/t,abcst^2,B,C,te^{i\theta},te^{-i\theta},Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst;q)_{\infty}}\\ &\qquad\cdot\frac 1{(abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta},abcst^2/Aq;q)_{\infty}}\\ &\qquad\cdot\Q87{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aqte^{i\theta}/abcst,Aqe^{-i\theta}/abcst}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aqe^{i\theta}/t,Aqe^{-i\theta}/t}q\\ &=\frac{(abcst^2,Aq/abcst^2,abcst^2/BC,abcste^{i\theta}/B,abcste^{-i\theta}/B,abcste^{i\theta}/C,abcste^{-i\theta}/C,abcs;q)_{\infty}}{(abcst^2/B,abcst^2/C,abcste^{i\theta},abcste^{-i\theta},ABq/abcst^2,ACq/abcst^2,Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst;q)_{\infty}} \end{align}
ここで, これに
\begin{align} \frac 1{2\pi}\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\frac{1}{\sqrt{1-x^2}} \end{align}
を掛けて積分すると,
\begin{align} &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{(te^{i\theta},te^{-i\theta};q)_r}{(abcste^{i\theta},abcste^{-i\theta};q)_r}\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\frac{(at,bt,ct,st;q)_r}{(abct,abst,acst,bcst;q)_r}\\ &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta};q)_{\infty}}\right|^2\,\frac{(Aqe^{i\theta}/t,Aqe^{-i\theta}/t,te^{i\theta},te^{-i\theta};q)_{\infty}}{(Aqe^{i\theta}/abcst,Aqe^{-i\theta}/abcst,abcste^{i\theta},abcste^{-i\theta};q)_{\infty}}\\ &\qquad\cdot\frac{(Aqe^{i\theta}/abcst^2,Aqe^{-i\theta}/abcst^2;q)_r}{(Aqe^{i\theta}/t,Aqe^{-i\theta}/t;q)_r}\frac{dx}{\sqrt{1-x^2}}\\ &=\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},Aq^{r+1}e^{i\theta}/t;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},Aq^{r+1}e^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\ &\qquad\cdot\frac{(Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_r}{(Aq/at,Aq/bt,Aq/ct,Aq/st;q)_r} \end{align}
が成り立つから,

\begin{align} &\frac 1{2\pi}\frac{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\ &\qquad+\frac{(Aq/B,Aq/C,abcst^2,B,C,Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,abcst^2/B,abcst^2/C,abcst^2/Aq;q)_{\infty}}\\ &\qquad\cdot\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q \end{align}
より,
\begin{align} &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},abcste^{i\theta}/B,abcste^{i\theta}/C;q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},Aqe^{i\theta}/abcst;q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}\frac{(abcs,abct,abst,acst,bcst;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\ &\qquad+\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,abcs;q)_{\infty}}\\ &\qquad\cdot\frac{(Aq/B,Aq/C,abcst^2,B,C,Aq/abcst^2;q)_{\infty}}{(A^2q^2/abcst^2,ABq/abcst^2,ACq/abcst^2,abcst^2/B,abcst^2/C,abcst^2/Aq;q)_{\infty}}\\ &\qquad\cdot\frac{(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q\\ &=\frac{(abcst^2/B,abcst^2/C,ABq/abcst^2,ACq/abcst^2,abct,abst,acst,bcst;q)_{\infty}}{(abcst^2,Aq/abcst^2,abcst^2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{abcst^2/q,q\sqrt{abcst^2/q},-q\sqrt{abcst^2/q},A,B,C,at,bt,ct,st}{\sqrt{abcst^2/q},-\sqrt{abcst^2/q},abcst^2/A,abcst^2/B,abcst^2/C,abct,abst,acst,bcst}q\\ &\qquad\cdot\frac{(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)_{\infty}}{(abcst^2/BC,A^2q^2/abcst^2,abcst^2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{A^2q/abcst^2,q\sqrt{A^2q/abcst^2},-q\sqrt{A^2q/abcst^2},A,ABq/abcst^2,ACq/abcst^2,Aq/abst,Aq/acst,Aq/bcst,Aq/abct}{\sqrt{A^2q/abcst^2},-\sqrt{A^2q/abcst^2},A/abcst^2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st}q \end{align}
となって定理が示された.

$u=Aq/abcst, v=abcst/B, w=abcst/C$として, $A,B,C$を消去すると
\begin{align} &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},ve^{i\theta},we^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},ue^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)_{\infty}}{(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{vwt/uq,q\sqrt{vwt/uq},-q\sqrt{vwt/uq},vw/q,w/u,v/u,at,bt,ct,st}{\sqrt{vwt/uq},-\sqrt{vwt/uq},tq/u,vt,wt,abct,abst,acst,bcst}q\\ &\qquad+\frac{(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)_{\infty}}{(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{uvw/tq,q\sqrt{uvw/tq},-q\sqrt{uvw/tq},vw/q,w/t,v/t,au,bu,cu,su}{\sqrt{uvw/tq},-\sqrt{uvw/tq},uq/t,vu,wu,abcu,absu,acsu,bcsu}q \end{align}
となって右辺が$t,u$に関して対称的な形になり, 条件は$abcstu=vw$となる. 以下に定理として書いておく.

$abcstu=vw$のとき,
\begin{align} &\frac 1{2\pi}\int_{-1}^1\left|\frac{(e^{2i\theta},ve^{i\theta},we^{i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},se^{i\theta},te^{i\theta},ue^{i\theta};q)_{\infty}}\right|^2\,\frac{dx}{\sqrt{1-x^2}}\\ &=\frac{(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)_{\infty}}{(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)_{\infty}}\\ &\qquad\cdot\Q{10}{9}{vwt/uq,q\sqrt{vwt/uq},-q\sqrt{vwt/uq},vw/q,w/u,v/u,at,bt,ct,st}{\sqrt{vwt/uq},-\sqrt{vwt/uq},tq/u,vt,wt,abct,abst,acst,bcst}q\\ &\qquad+\frac{(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)_{\infty}}{(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)_{\infty}}\\ &\qquad\cdot\Q{10}9{uvw/tq,q\sqrt{uvw/tq},-q\sqrt{uvw/tq},vw/q,w/t,v/t,au,bu,cu,su}{\sqrt{uvw/tq},-\sqrt{uvw/tq},uq/t,vu,wu,abcu,absu,acsu,bcsu}q \end{align}
が成り立つ.

参考文献

[1]
M. Rahman, An integral representation of a 10φ9 and continuous bi-orthogonal 10φ9 rational functions., Canad. J. Math., 1986, 605-618
投稿日:29日前
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

Wataru
Wataru
756
50200
超幾何関数, 直交関数, 多重ゼータ値などに興味があります

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中