1
現代数学解説
文献あり

Rahmanの超幾何積分

92
0

前回の記事 で, Rahmanによる積分
12π11|(e2iθ,abcsteiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)|2dx1x2=(abcs,abct,abst,acst,bcst;q)(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q),x=cosθ
を示した. それを用いて, 以下の一般化を示す.

Rahman(1986)

ABCq=(abcst)2のとき,
12π11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)|2dx1x2=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2,abct,abst,acst,bcst;q)(abcst2,Aq/abcst2,abcst2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[abcst2/q,qabcst2/q,qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)(abcst2/BC,A2q2/abcst2,abcst2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)10ϕ9[A2q/abcst2,qA2q/abcst2,qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]
が成り立つ. ただし, x=cosθである.

ABCq=(abcst)2として, non-terminating Jacksonの8ϕ7和公式 より,
8ϕ7[abcst2/q,qabcst2/q,qabcst2/q,A,B,C,teiθ,teiθabcst2/q,abcst2/q,abcst2/A,abcst2/B,abcst2/C,abcsteiθ,abcsteiθ;q]+(Aq/B,Aq/C,Aqeiθ/t,Aqeiθ/t,abcst2,B,C,teiθ,teiθ,Aq/abcst2;q)(A2q2/abcst2,ABq/abcst2,ACq/abcst2,Aqeiθ/abcst,Aqeiθ/abcst;q)1(abcst2/B,abcst2/C,abcsteiθ,abcsteiθ,abcst2/Aq;q)8ϕ7[A2q/abcst2,qA2q/abcst2,qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aqteiθ/abcst,Aqeiθ/abcstA2q/abcst2,A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aqeiθ/t,Aqeiθ/t;q]=(abcst2,Aq/abcst2,abcst2/BC,abcsteiθ/B,abcsteiθ/B,abcsteiθ/C,abcsteiθ/C,abcs;q)(abcst2/B,abcst2/C,abcsteiθ,abcsteiθ,ABq/abcst2,ACq/abcst2,Aqeiθ/abcst,Aqeiθ/abcst;q)
ここで, これに
12π|(e2iθ,abcsteiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)|211x2
を掛けて積分すると,
12π11|(e2iθ,abcsteiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)|2(teiθ,teiθ;q)r(abcsteiθ,abcsteiθ;q)rdx1x2=(abcs,abct,abst,acst,bcst;q)(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)(at,bt,ct,st;q)r(abct,abst,acst,bcst;q)r12π11|(e2iθ,abcsteiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ;q)|2(Aqeiθ/t,Aqeiθ/t,teiθ,teiθ;q)(Aqeiθ/abcst,Aqeiθ/abcst,abcsteiθ,abcsteiθ;q)(Aqeiθ/abcst2,Aqeiθ/abcst2;q)r(Aqeiθ/t,Aqeiθ/t;q)rdx1x2=12π11|(e2iθ,Aqr+1eiθ/t;q)(aeiθ,beiθ,ceiθ,seiθ,Aqr+1eiθ/abcst;q)|2dx1x2=(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)(Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)r(Aq/at,Aq/bt,Aq/ct,Aq/st;q)r
が成り立つから,

12π(abcst2,Aq/abcst2,abcst2/BC,abcs;q)(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)|2dx1x2=(abcs,abct,abst,acst,bcst;q)(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[abcst2/q,qabcst2/q,qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(Aq/B,Aq/C,abcst2,B,C,Aq/abcst2;q)(A2q2/abcst2,ABq/abcst2,ACq/abcst2,abcst2/B,abcst2/C,abcst2/Aq;q)(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)10ϕ9[A2q/abcst2,qA2q/abcst2,qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]
より,
12π11|(e2iθ,abcsteiθ/B,abcsteiθ/C;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ,Aqeiθ/abcst;q)|2dx1x2=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)(abcst2,Aq/abcst2,abcst2/BC,abcs;q)(abcs,abct,abst,acst,bcst;q)(q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[abcst2/q,qabcst2/q,qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q]+(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2;q)(abcst2,Aq/abcst2,abcst2/BC,abcs;q)(Aq/B,Aq/C,abcst2,B,C,Aq/abcst2;q)(A2q2/abcst2,ABq/abcst2,ACq/abcst2,abcst2/B,abcst2/C,abcst2/Aq;q)(abcs,Aq/at,Aq/bt,Aq/ct,Aq/st;q)(q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,,Aq/abct;q)10ϕ9[A2q/abcst2,qA2q/abcst2,qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]=(abcst2/B,abcst2/C,ABq/abcst2,ACq/abcst2,abct,abst,acst,bcst;q)(abcst2,Aq/abcst2,abcst2/BC,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[abcst2/q,qabcst2/q,qabcst2/q,A,B,C,at,bt,ct,stabcst2/q,abcst2/q,abcst2/A,abcst2/B,abcst2/C,abct,abst,acst,bcst;q](Aq/B,Aq/C,B,C,Aq/at,Aq/bt,Aq/ct,Aq/st;q)(abcst2/BC,A2q2/abcst2,abcst2/Aq,q,ab,ac,bc,as,bs,cs,Aq/abst,Aq/acst,Aq/bcst,Aq/abct;q)10ϕ9[A2q/abcst2,qA2q/abcst2,qA2q/abcst2,A,ABq/abcst2,ACq/abcst2,Aq/abst,Aq/acst,Aq/bcst,Aq/abctA2q/abcst2,A2q/abcst2,A/abcst2,Aq/B,Aq/C,Aq/at,Aq/bt,Aq/ct,Aq/st;q]
となって定理が示された.

u=Aq/abcst,v=abcst/B,w=abcst/Cとして, A,B,Cを消去すると
12π11|(e2iθ,veiθ,weiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ,ueiθ;q)|2dx1x2=(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[vwt/uq,qvwt/uq,qvwt/uq,vw/q,w/u,v/u,at,bt,ct,stvwt/uq,vwt/uq,tq/u,vt,wt,abct,abst,acst,bcst;q]+(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)10ϕ9[uvw/tq,quvw/tq,quvw/tq,vw/q,w/t,v/t,au,bu,cu,suuvw/tq,uvw/tq,uq/t,vu,wu,abcu,absu,acsu,bcsu;q]
となって右辺がt,uに関して対称的な形になり, 条件はabcstu=vwとなる. 以下に定理として書いておく.

abcstu=vwのとき,
12π11|(e2iθ,veiθ,weiθ;q)(aeiθ,beiθ,ceiθ,seiθ,teiθ,ueiθ;q)|2dx1x2=(vt,wt,w/t,v/t,abct,abst,acst,bcst;q)(tu,vwt/u,u/t,q,ab,ac,bc,as,bs,cs,at,bt,ct,st;q)10ϕ9[vwt/uq,qvwt/uq,qvwt/uq,vw/q,w/u,v/u,at,bt,ct,stvwt/uq,vwt/uq,tq/u,vt,wt,abct,abst,acst,bcst;q]+(uv,uw,w/u,v/u,abcu,absu,acsu,bcsu;q)(ut,uvw/t,t/u,q,ab,ac,bc,as,bs,cs,au,bu,cu,su;q)10ϕ9[uvw/tq,quvw/tq,quvw/tq,vw/q,w/t,v/t,au,bu,cu,suuvw/tq,uvw/tq,uq/t,vu,wu,abcu,absu,acsu,bcsu;q]
が成り立つ.

参考文献

[1]
M. Rahman, An integral representation of a 10φ9 and continuous bi-orthogonal 10φ9 rational functions., Canad. J. Math., 1986, 605-618
投稿日:423
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Wataru
Wataru
828
55541
超幾何関数, 直交関数, 多重ゼータ値などに興味があります

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中