0

超球関数の超幾何関数による表示

34
0
$$\newcommand{bk}[0]{\boldsymbol{k}} \newcommand{bl}[0]{\boldsymbol{l}} \newcommand{BQ}[5]{{}_{#1}\psi_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{calA}[0]{\mathcal{A}} \newcommand{calS}[0]{\mathcal{S}} \newcommand{CC}[0]{\mathbb{C}} \newcommand{F}[5]{{}_{#1}F_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{H}[5]{{}_{#1}H_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{inv}[0]{\mathrm{inv}} \newcommand{maj}[0]{\mathrm{maj}} \newcommand{ol}[0]{\overline} \newcommand{Q}[5]{{}_{#1}\phi_{#2}\left[\begin{matrix}#3\\#4\end{matrix};#5\right]} \newcommand{QQ}[0]{\mathbb{Q}} \newcommand{ZZ}[0]{\mathbb{Z}} $$

第1種超球関数は
\begin{align} C_{\nu}^{(a)}(x)&=\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma(\nu+1)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2} \end{align}
$x$に関する超幾何関数によって定義されるが, 前の記事 で導入した第2種超球関数は
\begin{align} D_{\nu}^{(a)}(\cos\theta)&=\frac{2\Gamma(2a+\nu)}{\Gamma(a)\Gamma(a+\nu+1)}(2\sin\theta)^{1-2a}\sum_{0\leq k}\frac{(\nu+1,1-a)_k}{k!(a+\nu+1)_k}\cos(\nu+2k+1)\theta \end{align}
とFourier級数の形で導入した. 今回はこの$C_{\nu}^{(a)}(x),D_{\nu}^{(a)}(x)$$x=0,1$における展開を超幾何関数によって与えようと思う.

$x=0$における展開

\begin{align} \tilde{D}_{\nu}^{(a)}(x)&:=e^{i\pi a}\frac{\Gamma(2a+\nu)}{\Gamma(a)\Gamma(a+\nu+1)}(2x)^{-\nu-2a}\F21{\frac 12\nu+a,\frac 12\nu+a+\frac 12}{\nu+a+1}{\frac 1{x^2}} \end{align}
とする. 前の記事 の定理3は$-1< x<1$において,
\begin{align} D_{\nu}^{(a)}(x)&=-i\tilde{D}_{\nu}^{(a)}(x+i0)+ie^{-2\pi ia}\tilde{D}_{\nu}^{(a)}(x-i0) \end{align}
が成り立つというものだった. $\tilde{D}_{\nu}^{(a)}(x)$の定義式に${}_2F_1$の変換公式
\begin{align} \F21{a,b}{c}{\frac 1x}&=\frac{\Gamma(c)\Gamma(b-a)}{\Gamma(b)\Gamma(c-a)}(-x)^a\F21{a,1+a-c}{1+a-b}{x}\\ &\qquad+\frac{\Gamma(c)\Gamma(a-b)}{\Gamma(a)\Gamma(c-b)}(-x)^b\F21{b,1+b-c}{1+b-a}{x} \end{align}
を用いると,
\begin{align} \tilde{D}_{\nu}^{(a)}(x)&=e^{i\pi a}\frac{\Gamma(2a+\nu)}{\Gamma(a)\Gamma(a+\nu+1)}(2x)^{-\nu-2a}\\ &\qquad\cdot\bigg(\frac{\Gamma(\nu+a+1)\Gamma\left(\frac 12\right)}{\Gamma\left(\frac 12\nu+a+\frac 12\right)\Gamma\left(1+\frac{\nu}2\right)}(-x^2)^{\frac 12\nu+a}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\frac{\Gamma(\nu+a+1)\Gamma\left(-\frac 12\right)}{\Gamma\left(\frac 12\nu+a\right)\Gamma\left(\frac 12\nu+\frac 12\right)}(-x^2)^{\frac 12\nu+a+\frac 12}\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg)\\ &=\frac{e^{i\pi a}}{\Gamma(a)}(2x)^{-\nu-2a}\\ &\qquad\cdot\bigg(\frac{\Gamma\left(\frac 12\nu+a\right)}{2\Gamma\left(1+\frac{\nu}2\right)}(-x^2)^{\frac 12\nu+a}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad-\frac{\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma\left(\frac 12\nu+\frac 12\right)}(-x^2)^{\frac 12\nu+a+\frac 12}\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg) \end{align}
であるから, $-1< x<1$とすると,
\begin{align} \tilde{D}_{\nu}^{(a)}(x+i0)&=\frac{e^{-\frac 12\pi i\nu}}{\Gamma(a)}\bigg(\frac{\Gamma\left(\frac 12\nu+a\right)}{2\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+i\frac{\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg)\\ e^{-2\pi ia}\tilde{D}_{\nu}^{(a)}(x-i0)&=\frac{e^{\frac 12\pi i\nu}}{\Gamma(a)}\bigg(\frac{\Gamma\left(\frac 12\nu+a\right)}{2\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad-i\frac{\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg) \end{align}
を得るので, これらより,
\begin{align} D_{\nu}^{(a)}(x)&=\frac{1}{\Gamma(a)}\bigg(-\sin\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\cos\frac{\pi\nu}2\frac{2\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg) \end{align}
つまり, 以下が得られた.

\begin{align} D_{\nu}^{(a)}(x)&=-\sin\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma(a)\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\cos\frac{\pi\nu}2\frac{2\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma(a)\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2} \end{align}
が成り立つ.

この表示より, 特に$D_{\nu}^{(a)}(x)$$x=0$において正則であることが分かる. これは先ほどの第1種超球関数の表示
\begin{align} C_{\nu}^{(a)}(x)&=\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma(\nu+1)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2} \end{align}
とは引数が異なっている. 同じ形の引数における形を得るために以下の変換公式を用いる.

Kummerの二次変換公式

\begin{align} \F21{a,b}{\frac{a+b+1}2}{\frac{1-x}2}&=\frac{\sqrt{\pi}\Gamma\left(\frac{a+b+1}2\right)}{\Gamma\left(\frac{a+1}2\right)\Gamma\left(\frac{b+1}2\right)}\F21{\frac a2,\frac b2}{\frac 12}{x^2}\\ &\qquad-\frac{2\sqrt{\pi}\Gamma\left(\frac{a+b+1}2\right)}{\Gamma\left(\frac a2\right)\Gamma\left(\frac b2\right)}x\F21{\frac{a+1}2,\frac{b+1}2}{\frac 32}{x^2} \end{align}

二次変換公式
\begin{align} \F21{a,b}{\frac{a+b+1}2}{\frac{1-x}2}&=\F21{\frac a2,\frac b2}{\frac{a+b+1}2}{1-x^2} \end{align}
の右辺に対し接続公式
\begin{align} \F21{a,b}{c}{1-x}&=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\F21{a,b}{1+a+b-c}{x}\\ &\qquad+\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}x^{c-a-b}\F21{c-a,c-b}{1+c-a-b}{x} \end{align}
を適用すればよい. (これらの変換公式に関しては 子葉さんの記事 を参照)

これを
\begin{align} C_{\nu}^{(a)}(x)&=\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma(\nu+1)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2} \end{align}
に対し適用すると
\begin{align} C_{\nu}^{(a)}(x)&=\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma(\nu+1)}\bigg(\frac{\sqrt{\pi}\Gamma\left(a+\frac 12\right)}{\Gamma\left(\frac{1-\nu}2\right)\Gamma\left(\frac{1}2\nu+a+\frac{1}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad-\frac{2\sqrt{\pi}\Gamma\left(a+\frac 12\right)}{\Gamma\left(-\frac{\nu}2\right)\Gamma\left(\frac 12\nu+a\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\bigg)\\ &=\cos\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma(a)\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\sin\frac{\pi\nu}2\frac{2\Gamma\left(\frac{1}2\nu+a+\frac{1}2\right)}{\Gamma(a)\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2} \end{align}
つまり, 以下を得る.

\begin{align} C_{\nu}^{(a)}(x)&=\cos\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma(a)\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\sin\frac{\pi\nu}2\frac{2\Gamma\left(\frac{1}2\nu+a+\frac{1}2\right)}{\Gamma(a)\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2} \end{align}

これは定理1の表示に対応するものである.

$x=1$における展開

次に, $x$$-x$に置き換えたものとの和と差を考えると,

\begin{align} \F21{a,b}{\frac{a+b+1}2}{\frac{1-x}2}+\F21{a,b}{\frac{a+b+1}2}{\frac{1+x}2}&=\frac{2\sqrt{\pi}\Gamma\left(\frac{a+b+1}2\right)}{\Gamma\left(\frac{a+1}2\right)\Gamma\left(\frac{b+1}2\right)}\F21{\frac a2,\frac b2}{\frac 12}{x^2}\\ \F21{a,b}{\frac{a+b+1}2}{\frac{1+x}2}-\F21{a,b}{\frac{a+b+1}2}{\frac{1-x}2}&=\frac{4\sqrt{\pi}\Gamma\left(\frac{a+b+1}2\right)}{\Gamma\left(\frac a2\right)\Gamma\left(\frac b2\right)}x\F21{\frac{a+1}2,\frac{b+1}2}{\frac 32}{x^2} \end{align}
が得られる. これらを定理1に用いると
\begin{align} A(x)&:=\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2} \end{align}
として,
\begin{align} &D_{\nu}^{(a)}(x)\\ &=-\sin\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma(a)\Gamma\left(1+\frac{\nu}2\right)}\F21{\frac 12\nu+a,-\frac{\nu}2}{\frac 12}{x^2}\\ &\qquad+\cos\frac{\pi\nu}2\frac{2\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma(a)\Gamma\left(\frac 12\nu+\frac 12\right)}x\F21{\frac 12\nu+a+\frac 12,\frac{1-\nu}2}{\frac 32}{x^2}\\ &=-\sin\frac{\pi\nu}2\frac{\Gamma\left(\frac 12\nu+a\right)}{\Gamma(a)\Gamma\left(1+\frac{\nu}2\right)}\frac{\Gamma\left(\frac 12\nu+a+\frac 12\right)\Gamma\left(\frac{1-\nu}2\right)}{2\sqrt{\pi}\Gamma\left(a+\frac 12\right)}\left(A(x)+A(-x)\right)\\ &\qquad+\cos\frac{\pi\nu}2\frac{2\Gamma\left(\frac 12\nu+a+\frac 12\right)}{\Gamma(a)\Gamma\left(\frac 12\nu+\frac 12\right)}\frac{\Gamma\left(\frac 12\nu+a\right)\Gamma\left(-\frac{\nu}2\right)}{4\sqrt{\pi}\Gamma\left(a+\frac 12\right)}(A(-x)-A(x))\\ &=-\sin\frac{\pi\nu}2\frac{\Gamma(\nu+2a)}{2^{\nu}\Gamma(2a)\Gamma\left(1+\frac{\nu}2\right)}\frac{\Gamma\left(\frac{1-\nu}2\right)}{2\sqrt{\pi}}\left(A(x)+A(-x)\right)\\ &\qquad+\cos\frac{\pi\nu}2\frac{\Gamma(\nu+2a)}{2^{\nu}\Gamma(2a)\Gamma\left(\frac 12\nu+\frac 12\right)}\frac{\Gamma\left(-\frac{\nu}2\right)}{2\sqrt{\pi}}(A(-x)-A(x))\\ &=-\frac{\sin\frac{\pi\nu}2}{\cos\frac{\pi\nu}2}\frac{\Gamma(\nu+2a)}{2\Gamma(2a)\Gamma\left(\nu+1\right)}\left(A(x)+A(-x)\right)\\ &\qquad-\frac{\cos\frac{\pi\nu}2}{\sin\frac{\pi\nu}2}\frac{\Gamma(\nu+2a)}{2\Gamma(2a)\Gamma\left(\nu+1\right)}(A(-x)-A(x))\\ &=-\frac{\Gamma(\nu+2a)}{2\Gamma(2a)\Gamma\left(\nu+1\right)}\left(\frac{\sin\frac{\pi\nu}2}{\cos\frac{\pi\nu}2}+\frac{\cos\frac{\pi\nu}2}{\sin\frac{\pi\nu}2}\right)A(-x)\\ &\qquad+\frac{\Gamma(\nu+2a)}{2\Gamma(2a)\Gamma\left(\nu+1\right)}\left(\frac{\cos\frac{\pi\nu}2}{\sin\frac{\pi\nu}2}-\frac{\sin\frac{\pi\nu}2}{\cos\frac{\pi\nu}2}\right)A(x)\\ &=-\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma\left(\nu+1\right)\sin\pi\nu}A(-x)+\frac{\Gamma(\nu+2a)\cos\pi\nu}{2\Gamma(2a)\Gamma\left(\nu+1\right)\sin\pi\nu}A(x)\\ &=\frac{\cos\pi\nu C_{\nu}^{(a)}(x)-C_{\nu}^{(a)}(-x)}{\sin\pi\nu} \end{align}
となる. つまり, 以下が得られた.

\begin{align} D_{\nu}^{(a)}(x)&=\frac{\cos\pi\nu C_{\nu}^{(a)}(x)-C_{\nu}^{(a)}(-x)}{\sin\pi\nu} \end{align}
が成り立つ.

${}_2F_1$の接続公式
\begin{align} \F21{a,b}{c}{1-x}&=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\F21{a,b}{1+a+b-c}{x}\\ &\qquad+\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}x^{c-a-b}\F21{c-a,c-b}{1+c-a-b}{x} \end{align}
を用いると,
\begin{align} \F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1+x}2}&=\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(\frac 12-a\right)}{\Gamma\left(\frac 12+a+\nu\right)\Gamma\left(\frac 12-a-\nu\right)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2}\\ &\qquad+\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(a-\frac 12\right)}{\Gamma(-\nu)\Gamma(2a+\nu)}\left(\frac{1-x}2\right)^{\frac 12-a}\F21{\frac 12-a-\nu,\frac 12+a+\nu}{\frac 32-a}{\frac{1-x}2}\\ &=\frac{\cos\pi(a+\nu)}{\cos\pi a}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2}\\ &\qquad+\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(a-\frac 12\right)}{\Gamma(-\nu)\Gamma(2a+\nu)}\left(\frac{1-x}2\right)^{\frac 12-a}\F21{\frac 12-a-\nu,\frac 12+a+\nu}{\frac 32-a}{\frac{1-x}2} \end{align}
と書き換えられるので, 定理3は
\begin{align} D_{\nu}^{(a)}(x)&=\frac{\cos\pi\nu C_{\nu}^{(a)}(x)-C_{\nu}^{(a)}(-x)}{\sin\pi\nu}\\ &=\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma\left(\nu+1\right)\sin\pi\nu}\left(\cos\pi\nu-\frac{\cos\pi(a+\nu)}{\cos\pi a}\right)\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2}\\ &\qquad-\frac{\Gamma(\nu+2a)}{\Gamma(2a)\Gamma\left(\nu+1\right)\sin\pi\nu}\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(a-\frac 12\right)}{\Gamma(-\nu)\Gamma(2a+\nu)}\left(\frac{1-x}2\right)^{\frac 12-a}\F21{\frac 12-a-\nu,\frac 12+a+\nu}{\frac 32-a}{\frac{1-x}2}\\ &=\frac{\Gamma(\nu+2a)\tan\pi a}{\Gamma(2a)\Gamma\left(\nu+1\right)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2}\\ &\qquad+\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(a-\frac 12\right)}{\pi\Gamma(2a)}\left(\frac{1-x}2\right)^{\frac 12-a}\F21{\frac 12-a-\nu,\frac 12+a+\nu}{\frac 32-a}{\frac{1-x}2} \end{align}
となる. つまり, 以下が得られた.

\begin{align} D_{\nu}^{(a)}(x)&=\frac{\Gamma(\nu+2a)\tan\pi a}{\Gamma(2a)\Gamma\left(\nu+1\right)}\F21{-\nu,2a+\nu}{a+\frac 12}{\frac{1-x}2}\\ &\qquad+\frac{\Gamma\left(a+\frac 12\right)\Gamma\left(a-\frac 12\right)}{\pi\Gamma(2a)}\left(\frac{1-x}2\right)^{\frac 12-a}\F21{\frac 12-a-\nu,\frac 12+a+\nu}{\frac 32-a}{\frac{1-x}2} \end{align}
が成り立つ.

これは$x=1$における$D_{\nu}^{(a)}$の展開を与えている.

投稿日:4日前
更新日:4日前
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

Wataru
Wataru
957
66759
超幾何関数, 直交関数, 多重ゼータ値などに興味があります

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中