log2=∑n=1∞1(2n−1)2(2nn)(4n2n)+∑n=1∞1n(2n−1)(2nn)(4n2n)log2=∑n=1∞1(2n)224n(4n2n)(2nn)+∑n=1∞1n(2n−1)24n(4n2n)(2nn)
これらの等式を示す。
C1(n,m):=(2n)!(2m)!(2n+2m)!(n+m)!n!m!12mC1(n0,m)=∑n0<n12n−1C1(n,m)
C1(n−1,m)−C1(n,m)=C1(n,m)((2n+2m)(2n+2m−1)(2n)(2n−1)nn+m−1)=C1(n,m)(2n+2m−12n−1−1)=2m2n−1C1(n,m)両辺2mで割り、n0<nの範囲で和を取ると12mC1(n0,m)=∑n0<n12n−1C1(n,m)◼
C2(n,m):=(2n)!(2m)!(2n+2m)!(n+m)!n!m!22n(2nn)22m(2mm)12m−1C2(n0,m)=∑n0<n12nC2(n,m)
C2(n−1,m)−C2(n,m)=C2(n,m)((2n+2m)(2n+2m−1)(2n)(2n−1)nn+m2n−12n−1)=C2(n,m)(2n+2m−12n−1)=2m−12nC2(n,m)両辺2m−1で割り、n0<nの範囲で和を取ると12m−1C2(n0,m)=∑n0<n12nC2(n,m)◼
がC1(n,m),C2(n,m)がn,mについて対象であることに注意する。
早速、証明をしていく。和を取る範囲を分けたり、補題を適用していくことで証明は完了する。
log2=∑n=1∞1(2n−1)2(2nn)(4n2n)+∑n=1∞1n(2n−1)(2nn)(4n2n)
∑0<n1(2n−1)(2n)=∑0<n1(2n−1)(2n)C1(n,0)=∑0<n12n−1∑0<m12m−1C1(n,m)=∑0<n1(2n−1)2C1(n,n)+2∑0<n<m12n−112m−1C1(n,m)=∑0<n1(2n−1)2(2nn)(4n2n)+2∑0<n12n−1∑n<m12m−1C1(n,m)=∑0<n1(2n−1)2(2nn)(4n2n)+2∑0<n1(2n)(2n−1)C1(n,n)=∑0<n1(2n−1)2(2nn)(4n2n)+∑0<n1n(2n−1)(2nn)(4n2n)また、∑0<n1(2n−1)(2n)=log2が成り立つことはよく知られているため、これらによりlog2=∑n=1∞1(2n−1)2(2nn)(4n2n)+∑n=1∞1n(2n−1)(2nn)(4n2n)◼
log2=∑n=1∞1(2n)224n(4n2n)(2nn)+∑n=1∞1n(2n−1)24n(4n2n)(2nn)
∑0<n1(2n−1)(2n)=∑0<n1(2n−1)(2n)C2(n,0)=∑0<n12n∑0<m12mC2(n,m)=∑0<n1(2n)2C2(n,n)+2∑0<n<m12n12mC2(n,m)=∑0<n1(2n)224n(4n2n)(2nn)+2∑0<n12n∑n<m12mC2(n,m)=∑0<n1(2n)224n(4n2n)(2nn)+2∑0<n12n(2n−1)C2(n,n)=∑0<n1(2n)224n(4n2n)(2nn)+∑0<n1n(2n−1)24n(4n2n)(2nn)命題1のときの証明と同様に∑0<n1(2n−1)(2n)=log2なのでlog2=∑n=1∞1(2n)224n(4n2n)(2nn)+∑n=1∞1n(2n−1)24n(4n2n)(2nn)◼
要するにどちらの級数もメルカトル級数がもとになっているということですね
詳しくは書きませんが、パラメーター付きのコネクターを用いることで、次のようなより一般的な等式を求めることもできます。∑n=1∞12n(2n−2x−1)=∑n=1∞1(2n−2x−1)2(1−2x)2n2(1−x)2n(1−2x)4n(1−x)n2+∑n=1∞1n(2n−2x−1)(1−2x)2n2(1−x)2n(1−2x)4n(1−x)n2
∑n=1∞12n(2n−2x−1)=∑n=1∞1(2n)2(1−2x)2n2(1−x)2nn!2(1−2x)4n(1−x)n2(12−x)n2+∑n=1∞1n(2n−2x−1)(1−2x)2n2(1−x)2nn!2(1−2x)4n(1−x)n2(12−x)n2
[1] 加速級数で表せる多重ゼータ値
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。