$$\newcommand{acoloneqq}[0]{\ &\hspace-2pt\coloneqq}
\newcommand{ar}[0]{\textrm{\ ar\!}}
\newcommand{asupplement}[1]{&\hspace{#1}\textsf}
\newcommand{beginend}[2]{{\begin{#1}#2\end{#1}}}
\newcommand{bm}[0]{\boldsymbol}
\newcommand{C}[0]{\mathbb{C}}
\newcommand{Defarrow}[0]{\xLeftrightarrow{\textrm{def}}}
\newcommand{hen}[1]{{(\textrm{{#1}辺})}}
\newcommand{hygeo}[6]{{{}_{#1}{#2}_{#3}\lr[{\beginend{matrix}{{#4}\\ {#5}}\ ;{#6}}]}}
\newcommand{kfrac}[0]{\mathop{\Large\raise-1.8pt{\textrm K}}}
\newcommand{Kfrac}[0]{\mathop{\huge\raise-2.2pt{\textrm K}}}
\newcommand{lr}[3]{\left#1{#2}\right#3}
\newcommand{lvvr}[3]{\lr{#1}{\negmedspace\lr|{#2}|\negmedspace}{#3}}
\newcommand{N}[0]{\mathbb{N}}
\newcommand{P}[0]{\mathbb{P}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{range}[1]{\rangeex{}{#1}{}}
\newcommand{Range}[1]{\Rangeex{}{#1}{}}
\newcommand{rangeex}[5]{\Rangeex{#1}{#2}{#3}{#4}{#5},}
\newcommand{Rangeex}[6]{{#1{#2}_{#4}#3#6\cdots#6#1{#2}_{#5}#3}}
\newcommand{rprod}[0]{\mathop{\prod\!\llap\coprod}}
\newcommand{sahen}[0]{\hen左}
\newcommand{slfrac}[2]{{{}^{#1}\hspace-4pt\diagup\hspace-4pt_{#2}}}
\newcommand{stirling}[3]{\lr[{\beginend{matrix}{{#1}\\ {#2}}{#3}}]}
\newcommand{Stirling}[3]{\lr\{{\beginend{matrix}{{#1}\\ {#2}}{#3}}\}}
\newcommand{uhen}[0]{\hen右}
\newcommand{vbin}[1]{\mathbin{{#1}\!\llap|\ }}
\newcommand{Z}[0]{\mathbb{Z}}
$$
$n\in\N_+$
$\beginend{align}{
\hat\lambda(n) \acoloneqq
\sum_{k=0}^\infty \lr({\frac{(-1)^k}{2k+1}})^n \\&=
\frac{A_{n-1}}{2(n-1)!}\lr({\frac\pi2})^n
}$
$\beginend{align}{
\sum_{n=1}^\infty \hat\lambda(n)z^n &=
\sum_{n=1}^\infty
z^n \sum_{k=0}^\infty \lr({\frac{(-1)^k}{2k+1}})^n =
\sum_{k=0}^\infty
\frac{\frac{(-1)^kz}{2k+1}}{1-\frac{(-1)^kz}{2k+1}} \\&=
z\sum_{k=0}^\infty \frac{(-1)^k}{2k+1+(-1)^{k+1}z} =
z\sum_{k=0}^\infty \lr({\frac1{4k+1-z}-\frac1{4k+3+z}}) \\&=
z\sum_{k=0}^\infty \frac{2(z+1)}{(4k+2)^2-(z+1)^2} =
\frac z4\sum_{k=0}^\infty
\frac{\frac{z+1}2}{\lr({k+\frac12})^2-\lr({\frac{z+1}4})^2} \\&\stackrel※=
\frac{\pi z}4\tan{\frac{\pi(z+1)}4} =
\frac{\pi z}4\sum_{n=0}^\infty \frac{A_n}{n!}\lr({\frac{\pi z}2})^n =
\frac12\sum_{n=0}^\infty \frac{A_n}{n!}\lr({\frac{\pi z}2})^{n+1} \\
\sahen &= \uhen
}$
$※\because$
三角関数の部分分数展開$\tan$
$\hat\lambda(n) = \beginend{cases}{
\lr({1-2^{-n}})\zeta(n) & n \equiv 0 \\
\beta{(n)} & n \equiv 1
} \pmod 2$であるため、
リーマンゼータ関数の偶数値とディリクレベータ関数の奇数値が求まりました。
$A_n$の値、
A000111 - OEIS
より。
$n$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ |
$A_n$ | $1$ | $1$ | $1$ | $2$ | $5$ | $16$ | $61$ | $272$ |