前の記事 と同様の方法によってnon-terminating $q$-Saalschützの和公式の両側類似も示すことができる.
$a^2q=bcdef$のとき,
\begin{align}
&\BQ33{a,e,f}{aq/b,aq/c,aq/d}q\\
&=a\frac{(q,aq/e,aq/f,b/a,c/a,d/a;q)_{\infty}}{(q/a,b,c,d,q/e,q/f;q)_{\infty}}\Q32{b,c,d}{aq/e,aq/f}q\\
&\qquad+\frac ba\frac{(q,a,e,f,bq/c,bq/d;q)_{\infty}}{(b,aq/b,aq/c,aq/d,be/a,bf/a;q)_{\infty}}\Q32{b,be/a,bf/a}{bq/c,bq/d}q\\
&\qquad+\frac{(q,b/a,cd/a,a,aq/cd,aq/ce,aq/cf,aq/de,aq/df;q)_{\infty}}{(b,c,d,q/e,q/f,aq/c,aq/d,be/a,bf/a;q)_{\infty}}
\end{align}
が成り立つ.
Non-terminating Jacksonの和公式
\begin{align}
&\Q87{a,\sqrt aq,-\sqrt aq,b,c,d,e,f}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f}q\\
&=\frac ba\frac{(aq,bq/a,bq/c,bq/d,bq/e,bq/f,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a,b^2q/a;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2/a,\sqrt{\frac{b^2}a}q,-\sqrt{\frac{b^2}a}q,b,bc/a,bd/a,be/a,bf/a}{\sqrt{\frac{b^2}a},-\sqrt{\frac{b^2}a},bq/a,bq/c,bq/d,bq/e,bq/f}q\\
&\qquad+\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq/ef,b/a;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,bc/a,bd/a,be/a,bf/a;q)_{\infty}}\qquad a^2q=bcdef
\end{align}
において, $a\mapsto aq^{-2n},e\mapsto eq^{-2n},f\mapsto fq^{-2n}$とすると, 条件は$a^2q=bcdef$のままで
\begin{align}
&\Q87{aq^{-2n},\sqrt aq^{1-n},-\sqrt aq^{1-n},b,c,d,eq^{-2n},fq^{-2n}}{\sqrt aq^{-n},-\sqrt aq^{-n},aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f}q\\
&=\frac baq^{2n}\frac{(aq^{1-2n},bq^{2n+1}/a,bq/c,bq/d,bq^{2n+1}/e,bq^{2n+1}/f,c,d,eq^{-2n},fq^{-2n};q)_{\infty}}{(aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a,b^2q^{2n+1}/a;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2q^{2n}/a,\sqrt{\frac{b^2}a}q^{n+1},-\sqrt{\frac{b^2}a}q^{n+1},b,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a}{\sqrt{\frac{b^2}a}q^n,-\sqrt{\frac{b^2}a}q^n,bq^{2n+1}/a,bq/c,bq/d,bq^{2n}/e,bq^{2n}/f}q\\
&\qquad+\frac{(aq^{1-2n},aq^{1-2n}/cd,aq/ce,aq/cf,aq/de,aq/df,aq^{2n+1}/ef,bq^{2n}/a;q)_{\infty}}{(aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a;q)_{\infty}}
\end{align}
が成り立つ. 左辺は
\begin{align}
&\Q87{aq^{-2n},\sqrt aq^{1-n},-\sqrt aq^{1-n},b,c,d,eq^{-2n},fq^{-2n}}{\sqrt aq^{-n},-\sqrt aq^{-n},aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f}q\\
&=\sum_{k=0}^{n-1}\frac{(aq^{-2n},\sqrt aq^{1-n},-\sqrt aq^{1-n},b,c,d,eq^{-2n},fq^{-2n};q)_k}{(\sqrt aq^{-n},-\sqrt aq^{-n},aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,q;q)_k}q^k\\
&\qquad+\sum_{k=-n}^{\infty}\frac{(aq^{-2n},\sqrt aq^{1-n},-\sqrt aq^{1-n},b,c,d,eq^{-2n},fq^{-2n};q)_{k+2n}}{(\sqrt aq^{-n},-\sqrt aq^{-n},aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,q;q)_{k+2n}}q^{k+2n}\\
&=\sum_{k=0}^{n-1}\frac{(aq^{-2n},\sqrt aq^{1-n},-\sqrt aq^{1-n},b,c,d,eq^{-2n},fq^{-2n};q)_k}{(\sqrt aq^{-n},-\sqrt aq^{-n},aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,q;q)_k}q^k\\
&\qquad+\frac{1-aq^{2n}}{q^{2n}-a}\frac{(q/a,b,c,d,q/e,q/f;q)_{2n}}{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{2n}}\\
&\qquad\cdot\sum_{k=-n}^{\infty}\frac{(a,\sqrt aq^{1+n},-\sqrt aq^{1+n},bq^{2n},cq^{2n},dq^{2n},e,f;q)_{k}}{(\sqrt aq^{n},-\sqrt aq^{n},aq/b,aq/c,aq/d,aq^{2n+1}/e,aq^{2n+1}/f,q^{2n+1};q)_{k}}q^{k}\\
&\to \Q32{b,c,d}{aq/e,aq/f}q\\
&\qquad-\frac{1}{a}\frac{(q/a,b,c,d,q/e,q/f;q)_{\infty}}{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}\BQ33{a,e,f}{aq/b,aq/c,aq/d}q\qquad n\to\infty
\end{align}
となる. 右辺第1項は
\begin{align}
&\frac baq^{2n}\frac{(aq^{1-2n},bq^{2n+1}/a,bq/c,bq/d,bq^{2n+1}/e,bq^{2n+1}/f,c,d,eq^{-2n},fq^{-2n};q)_{\infty}}{(aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a,b^2q^{2n+1}/a;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2q^{2n}/a,\sqrt{\frac{b^2}a}q^{n+1},-\sqrt{\frac{b^2}a}q^{n+1},b,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a}{\sqrt{\frac{b^2}a}q^n,-\sqrt{\frac{b^2}a}q^n,bq^{2n+1}/a,bq/c,bq/d,bq^{2n}/e,bq^{2n}/f}q\\
&=\frac baq^{2n}\frac{(aq^{1-2n},eq^{-2n},fq^{-2n};q)_{2n}}{(aq^{1-2n}/b,aq^{1-2n}/c,aq^{1-2n}/d;q)_{2n}}\frac{(aq,bq^{2n+1}/a,bq/c,bq/d,bq^{2n+1}/e,bq^{2n+1}/f,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a,b^2q^{2n+1}/a;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2q^{2n}/a,\sqrt{\frac{b^2}a}q^{n+1},-\sqrt{\frac{b^2}a}q^{n+1},b,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a}{\sqrt{\frac{b^2}a}q^n,-\sqrt{\frac{b^2}a}q^n,bq^{2n+1}/a,bq/c,bq/d,bq^{2n}/e,bq^{2n}/f}q\\
&=\frac ba\frac{(1/a,q/e,q/f;q)_{2n}}{(b/a,c/a,d/a;q)_{2n}}\frac{(aq,bq^{2n+1}/a,bq/c,bq/d,bq^{2n+1}/e,bq^{2n+1}/f,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a,b^2q^{2n+1}/a;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2q^{2n}/a,\sqrt{\frac{b^2}a}q^{n+1},-\sqrt{\frac{b^2}a}q^{n+1},b,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a}{\sqrt{\frac{b^2}a}q^n,-\sqrt{\frac{b^2}a}q^n,bq^{2n+1}/a,bq/c,bq/d,bq^{2n}/e,bq^{2n}/f}q\\
&\to \frac ba\frac{(1/a,q/e,q/f;q)_{\infty}}{(b/a,c/a,d/a;q)_{\infty}}\frac{(aq,bq/c,bq/d,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}\Q32{b,be/a,bf/a}{bq/c,bq/d}q\qquad n\to\infty
\end{align}
右辺第2項は
\begin{align}
&\frac{(aq^{1-2n},aq^{1-2n}/cd,aq/ce,aq/cf,aq/de,aq/df,aq^{2n+1}/ef,bq^{2n}/a;q)_{\infty}}{(aq^{1-2n}/c,aq^{1-2n}/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a;q)_{\infty}}\\
&=\frac{(aq^{1-2n},aq^{1-2n}/cd;q)_{2n}}{(aq^{1-2n}/c,aq^{1-2n}/d;q)_{2n}}\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq^{2n+1}/ef,bq^{2n}/a;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a;q)_{\infty}}\\
&=\frac{(1/a,cd/a;q)_{2n}}{(c/a,d/a;q)_{2n}}\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df,aq^{2n+1}/ef,bq^{2n}/a;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,bcq^{2n}/a,bdq^{2n}/a,be/a,bf/a;q)_{\infty}}\\
&\to \frac{(1/a,cd/a;q)_{\infty}}{(c/a,d/a;q)_{\infty}}\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}\qquad n\to\infty
\end{align}
となる. よって, これらより,
\begin{align}
&\Q32{b,c,d}{aq/e,aq/f}q\\
&\qquad-\frac{1}{a}\frac{(q/a,b,c,d,q/e,q/f;q)_{\infty}}{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}\BQ33{a,e,f}{aq/b,aq/c,aq/d}q\\
&=\frac ba\frac{(1/a,q/e,q/f;q)_{\infty}}{(b/a,c/a,d/a;q)_{\infty}}\frac{(aq,bq/c,bq/d,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}\Q32{b,be/a,bf/a}{bq/c,bq/d}q\\
&\qquad+\frac{(1/a,cd/a;q)_{\infty}}{(c/a,d/a;q)_{\infty}}\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}
\end{align}
を得る. ${}_3\psi_3$について表すと,
\begin{align}
&\BQ33{a,e,f}{aq/b,aq/c,aq/d}q\\
&=a\frac{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}{(q/a,b,c,d,q/e,q/f;q)_{\infty}}\Q32{b,c,d}{aq/e,aq/f}q\\
&\qquad-a\frac{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}{(q/a,b,c,d,q/e,q/f;q)_{\infty}}\frac ba\frac{(1/a,q/e,q/f;q)_{\infty}}{(b/a,c/a,d/a;q)_{\infty}}\frac{(aq,bq/c,bq/d,c,d,e,f;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}\Q32{b,be/a,bf/a}{bq/c,bq/d}q\\
&\qquad-a\frac{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}{(q/a,b,c,d,q/e,q/f;q)_{\infty}}\frac{(1/a,cd/a;q)_{\infty}}{(c/a,d/a;q)_{\infty}}\frac{(aq,aq/cd,aq/ce,aq/cf,aq/de,aq/df;q)_{\infty}}{(aq/c,aq/d,aq/e,aq/f,be/a,bf/a;q)_{\infty}}\\
&=a\frac{(b/a,c/a,d/a,aq/e,aq/f,q;q)_{\infty}}{(q/a,b,c,d,q/e,q/f;q)_{\infty}}\Q32{b,c,d}{aq/e,aq/f}q\\
&\qquad+\frac ba\frac{(q,a,bq/c,bq/d,e,f;q)_{\infty}}{(b,aq/b,aq/c,aq/d,be/a,bf/a;q)_{\infty}}\Q32{b,be/a,bf/a}{bq/c,bq/d}q\\
&\qquad+\frac{(q,b/a,cd/a,a,aq/cd,aq/ce,aq/cf,aq/de,aq/df;q)_{\infty}}{(b,c,d,q/e,q/f,aq/c,aq/d,be/a,bf/a;q)_{\infty}}
\end{align}
となって示すべき等式が得られる.
定理1において$d=a$とすると, 右辺第1項が$0$になり, non-terminating $q$-Saalschützの和公式 を得ることができる.
定理1において, $b\mapsto aq/b, c\mapsto aq/c, d\mapsto aq/d$とすると,
\begin{align}
&\BQ33{a,e,f}{b,c,d}q\\
&=a\frac{(q,aq/e,aq/f,q/b,q/c,q/d;q)_{\infty}}{(q/a,aq/b,aq/c,aq/d,q/e,q/f;q)_{\infty}}\Q32{aq/b,aq/c,aq/d}{aq/e,aq/f}q\\
&\qquad+\frac qb\frac{(q,a,e,f,cq/b,dq/b;q)_{\infty}}{(aq/b,b,c,d,eq/b,fq/b;q)_{\infty}}\Q32{aq/b,eq/b,fq/b}{cq/b,dq/b}q\\
&\qquad+\frac{(q,q/b,aq^2/cd,a,cd/aq,c/e,c/f,d/e,d/f;q)_{\infty}}{(aq/b,aq/c,aq/d,q/e,q/f,c,d,eq/b,fq/b;q)_{\infty}}\qquad aefq^2=bcd
\end{align}
が成り立つ. 変数を付け替えて以下の形でまとめておく.
$abcq^2=def$のとき
\begin{align}
&\BQ33{a,b,c}{d,e,f}q\\
&=a\frac{(q,aq/b,aq/c,q/d,q/e,q/f;q)_{\infty}}{(aq/d,aq/e,aq/f,q/a,q/b,q/c;q)_{\infty}}\Q32{aq/d,aq/e,aq/f}{aq/b,aq/c}q\\
&\qquad+\frac qd\frac{(a,b,c,eq/d,fq/d,q;q)_{\infty}}{(d,e,f,aq/d,bq/d,cq/d;q)_{\infty}}\Q32{aq/d,bq/d,cq/d}{eq/d,fq/d}q\\
&\qquad+\frac{(q,q/d,aq^2/ef,a,ef/aq,e/b,e/c,f/b,f/c;q)_{\infty}}{(aq/e,aq/f,q/b,q/c,e,f,aq/d,bq/d,cq/d;q)_{\infty}}
\end{align}
が成り立つ.
さらに$d\mapsto q/d,e\mapsto q/e,f\mapsto q/f$とすると, 条件は$abcdef=q$となり,
\begin{align}
&\BQ33{a,b,c}{q/d,q/e,q/f}q\\
&=a\frac{(d,e,f,aq/b,aq/c,q;q)_{\infty}}{(q/a,q/b,q/c,ad,ae,af;q)_{\infty}}\Q32{ad,ae,af}{aq/b,aq/c}q\\
&\qquad+d\frac{(a,b,c,dq/e,dq/f,q;q)_{\infty}}{(q/d,q/e,q/f,ad,bd,cd;q)_{\infty}}\Q32{ad,bd,cd}{dq/e,dq/f}q\\
&\qquad+\frac{(q,a,d,aef,bcd,q/be,q/ce,q/bf,q/cf;q)_{\infty}}{(q/b,q/c,q/e,q/f,ad,ae,af,bd,cd;q)_{\infty}}
\end{align}
と表される. これは$(a,b,c)\leftrightarrow(d,e,f)$の入れ替えに関して対称的な形である.
Rahman-Suslovによって別の形の$q$-Saalschützの両側類似も知られており, それは2つの${}_3\psi_3$が現れるものである.