2
大学数学基礎解説
文献あり

単位円の内外で別の有理関数に収束する級数

110
0
$$\newcommand{acoloneqq}[0]{\ &\hspace-2pt\coloneqq} \newcommand{ar}[1]{\operatorname{ar{#1}}} \newcommand{arc}[1]{\operatorname{arc{#1}}} \newcommand{asupplement}[1]{&\hspace{#1}\textsf} \newcommand{beginend}[2]{{\begin{#1}#2\end{#1}}} \newcommand{bm}[0]{\boldsymbol} \newcommand{bscolor}[1]{\color{var(--bs-#1)}} \newcommand{bscolorbox}[1]{\colorbox{var(--bs-#1)}} \newcommand{bsrowcolor}[1]{\rowcolor{var(--bs-#1)}} \newcommand{bt}[1]{{\because\textsf{#1}}} \newcommand{C}[0]{\mathbb C} \newcommand{Defarrow}[0]{\xLeftrightarrow{\textrm{def}}} \newcommand{fqty}[0]{\!\qty} \newcommand{hcfrac}[3]{{\frac{#1}{#2}\!\genfrac{}{}0{}{}{#3}\!}} \newcommand{hen}[1]{{(\textrm{{#1}辺})}} \newcommand{hygeo}[6]{{{}_{#1}{#2}_{#3}{\qty[\beginend{matrix*}{#4\\ #5}\ ;{#6}]}}} \newcommand{ifc}[0]{\operatorname{if}} \newcommand{In}[0]{\in\mathbb} \newcommand{kfrac}[0]{\mathop{\Large\raise-.8pt{\textrm K}}} \newcommand{Kfrac}[0]{\mathop{\huge\raise-2.2pt{\textrm K}}} \newcommand{kome}[0]{\textreferencemark} \newcommand{leftshiftarrow}[0]{{\substack{\curvearrowright\\ \leftharpoondown}}} \newcommand{lr}[3]{{\left#1{#2}\right#3}} \newcommand{lvvr}[2]{\lr{#1}{\negmedspace\lr|{#2}|\negmedspace}} \newcommand{N}[0]{\mathbb N} \newcommand{newop}[1]{\DeclareMathOperator{#1}{#1}} \newcommand{ot}[0]{\leftarrow} \newcommand{otherwise}[0]{\textrm{otherwise}} \newcommand{P}[0]{\mathbb P} \newcommand{Q}[0]{\mathbb Q} \newcommand{qb}[0]{{\quad\because}} \newcommand{qbt}[1]{{\quad\because\textsf{#1}}} \newcommand{R}[0]{\mathbb R} \newcommand{RANGE}[0]{}\newcommand{rangeex}[6][,]{{#2{#3}_{#5}#4#1\cdots#1#2{#3}_{#6}#4}}\newcommand{range}[2][,]{\rangeex[#1]{}{#2}{}}{} \newcommand{REQUIRE}[0]{}\require{physics}{} \newcommand{rightshiftarrow}[0]{{\substack{\curvearrowleft\\ \rightharpoondown}}} \newcommand{rprod}[0]{\mathop{\prod\!\llap\coprod}} \newcommand{sahen}[0]{\hen左} \newcommand{STIRLING}[0]{}\newcommand{stirling}[3][]{{\qty[\beginend{matrix}{{#2}\\ {#3}}{#1}]}}\newcommand{Stirling}[3][]{{\qty{\beginend{matrix}{{#2}\\ {#3}}{#1}}}}{} \newcommand{uhen}[0]{\hen右} \newcommand{vbin}[1]{\mathbin{{#1}\!\llap|\ }} \newcommand{Z}[0]{\mathbb Z} \newcommand{zzCOMPLEXPARTS}[0]{}\let\Re\relax\newop{Re}\let\Im\relax\newop{Im}{} $$

興味深い例を 特殊関数グラフィックスライブラリー で見つけたので証明します。

$\displaystyle \sum_{n=1}^\infty \frac{z^{n-1}}{(1-z^n)(1-z^{n+1})} = \beginend{cases}{ \dfrac1{(1-z)^2} &|z|<1 \\ \dfrac1{z(1-z)^2} &|z|>1 }$

$\beginend{align}{ \sahen &= \frac1{1-z}\sum_{n=1}^\infty \qty(\frac{z^{n-1}}{1-z^n}-\frac{z^n}{1-z^{n+1}}) \\&= \frac1{1-z}\lim_{N\to\infty} \fqty(\frac1{1-z}-\frac{z^N}{1-z^{N+1}}) \\&= \uhen }$

参考文献

投稿日:2024127
更新日:202427
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

著者の記事における命題は大半が自分で発見したものであり、 何かしらの論文などに基づいたものではありません。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中