Chebyshev多項式は区間における重み関数の直交多項式で, Legendre多項式は重み関数の直交多項式である. Gegenbauer多項式は, これらを一般化した重み関数に関する直交多項式として以下のように定義される.
重み関数はと置き換えて, とすると, に収束するので, は本質的にHermite多項式になる. つまり, Gegenbauer多項式はChebyshev多項式, Legendre多項式, Hermite多項式を含む非常に素晴らしい直交多項式だということである. Gegenbauer多項式の直交性は
という形になっている. これはLegendre多項式の記事(
Legendre多項式の変数付きの拡張について
)において導入した変数付きの拡張(類似)とはまた別の拡張になっている. Gegenbauer多項式は重み関数がの変換で変わらないので, が成り立つ. つまり, 偶数次の場合は偶関数, 奇数次の場合は奇関数である. これによって, Gegenbauer多項式が満たす微分方程式の確定特異点をにそろえたものがの2通りあることになる. の方は, 区間における重み関数に関する直交多項式なので,
と表すことができる. Gegenbauer多項式の母関数を考えてみると
と計算できる. これによって, として,
と2通りの方法によって, 前回の記事(
Chebyshev多項式について
)で考えたLanden変換のある種の一般化として解釈できる. Gegenbauer多項式のこの性質の上手く応用する方法についても研究していきたいと考えている.