前の記事
で超球関数の二次変換公式
\begin{align}
P_{\nu}^{\left(a,-\frac 12\right)}(2x-1)&=\frac{\Gamma\left(\nu+\frac 12\right)\Gamma\left(a+\frac 12\right)}{\sqrt{\pi}\Gamma\left(a+\nu+\frac 12\right)}C_{2\nu}^{\left(a+\frac 12\right)}(\sqrt x)\\
Q_{\nu}^{\left(a,-\frac 12\right)}(2x-1)&=\frac{\Gamma\left(\nu+\frac 12\right)\Gamma\left(a+\frac 12\right)}{\sqrt{\pi}\Gamma\left(a+\nu+\frac 12\right)}D_{2\nu}^{\left(a+\frac 12\right)}(\sqrt x)
\end{align}
を示した.
前の記事
でJacobi関数の2つの積の積分を計算したので, 今回はこれらを用いて, 2つの超球関数の積の[0,1]における積分を求めたいと思う. まず, 上の式は$0< x<1$に対して,
\begin{align}
C_{2\nu}^{(a)}(x)&=\frac{\sqrt{\pi}\Gamma\left(a+\nu\right)}{\Gamma\left(\nu+\frac 12\right)\Gamma\left(a\right)}P_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)\\
D_{2\nu}^{(a)}(x)&=\frac{\sqrt{\pi}\Gamma\left(a+\nu\right)}{\Gamma\left(\nu+\frac 12\right)\Gamma\left(a\right)}Q_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)
\end{align}
と書き換えられる.
前の記事
の定理2において, $a\mapsto a-\frac 12,b=-\frac 12,x\mapsto 2x^2-1$とすると,
\begin{align}
&\int_0^1P_{\mu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)P_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\sin\pi\mu\sin\pi\nu}{2\pi(\nu-\mu)(a+\mu+\nu)}\left(\frac{\Gamma(-\nu)\Gamma\left(a+\mu+\frac 12\right)}{\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)\Gamma\left(a+\nu+\frac 12\right)}{\Gamma\left(\frac 12-\mu\right)\Gamma\left(a+\nu\right)}\right)\\
&\int_0^1P_{\mu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)(P_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)\cot\pi\nu-Q_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\Gamma\left(a+\mu+\frac 12\right)\Gamma\left(\nu+\frac 12\right)\sin\pi\mu}{2\pi^2(\nu-\mu)(a+\mu+\nu)}\left(\frac{\Gamma(-\nu)}{\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)}{\Gamma\left(a+\nu\right)}\right)\\
&\int_0^1(P_{\mu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)\cot\pi\mu-Q_{\mu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1))(P_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1)\cot\pi\nu-Q_{\nu}^{\left(a-\frac 12,-\frac 12\right)}(2x^2-1))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{1}{2\pi(\nu-\mu)(a+\mu+\nu)\cos\pi a}\left(\frac{\Gamma(-\nu)\Gamma\left(\mu+\frac 12\right)}{\Gamma\left(\frac 12-a-\nu\right)\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)\Gamma\left(\nu+\frac 12\right)}{\Gamma\left(\frac 12-a-\mu\right)\Gamma\left(a+\nu\right)}\right)
\end{align}
となるから, これを超球関数で書き換えると
\begin{align}
&\int_0^1C_{2\mu}^{(a)}(x)C_{2\nu}^{(a)}(x)(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\sin\pi\mu\sin\pi\nu}{2(\nu-\mu)(a+\mu+\nu)}\frac{\Gamma(a+\mu)\Gamma\left(a+\nu\right)}{\Gamma\left(a\right)^2\Gamma\left(\mu+\frac 12\right)\Gamma\left(\nu+\frac 12\right)}\left(\frac{\Gamma(-\nu)\Gamma\left(a+\mu+\frac 12\right)}{\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)\Gamma\left(a+\nu+\frac 12\right)}{\Gamma\left(\frac 12-\mu\right)\Gamma\left(a+\nu\right)}\right)\\
&=\frac{\sin\pi\mu\sin\pi\nu\cos\pi\mu\cos\pi\nu\left(\Gamma(-\nu)\Gamma\left(a+\nu\right)\Gamma\left(\frac 12-\mu\right)\Gamma\left(a+\mu+\frac 12\right)-\Gamma(-\mu)\Gamma\left(a+\mu\right)\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\nu+\frac 12\right)\right)}{2\pi^2(\nu-\mu)(a+\mu+\nu)\Gamma\left(a\right)^2}\\
&=\frac{\sin 2\pi\mu\sin 2\pi\nu\left(\Gamma(-\nu)\Gamma\left(a+\nu\right)\Gamma\left(\frac 12-\mu\right)\Gamma\left(a+\mu+\frac 12\right)-\Gamma(-\mu)\Gamma\left(a+\mu\right)\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\nu+\frac 12\right)\right)}{8\pi^2(\nu-\mu)(a+\mu+\nu)\Gamma\left(a\right)^2}\\
&\int_0^1C_{2\mu}^{(a)}(x)(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\Gamma\left(a+\mu+\frac 12\right)\Gamma\left(\nu+\frac 12\right)\sin\pi\mu}{2\pi(\nu-\mu)(a+\mu+\nu)}\frac{\Gamma(a+\mu)\Gamma\left(a+\nu\right)}{\Gamma\left(a\right)^2\Gamma\left(\mu+\frac 12\right)\Gamma\left(\nu+\frac 12\right)}\left(\frac{\Gamma(-\nu)}{\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)}{\Gamma\left(a+\nu\right)}\right)\\
&=\frac{\sin\pi\mu\Gamma\left(a+\mu+\frac 12\right)(\Gamma(-\nu)\Gamma\left(a+\nu\right)-\Gamma(-\mu)\Gamma(a+\mu))}{2\pi(\nu-\mu)(a+\mu+\nu)\Gamma\left(a\right)^2\Gamma\left(\mu+\frac 12\right)}\\
&\int_0^1(C_{2\mu}^{(a)}(x)\cot\pi\mu-D_{2\mu}^{(a)}(x))(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{1}{2(\nu-\mu)(a+\mu+\nu)\cos\pi a}\frac{\Gamma(a+\mu)\Gamma\left(a+\nu\right)}{\Gamma\left(a\right)^2\Gamma\left(\mu+\frac 12\right)\Gamma\left(\nu+\frac 12\right)}\left(\frac{\Gamma(-\nu)\Gamma\left(\mu+\frac 12\right)}{\Gamma\left(\frac 12-a-\nu\right)\Gamma\left(a+\mu\right)}-\frac{\Gamma(-\mu)\Gamma\left(\nu+\frac 12\right)}{\Gamma\left(\frac 12-a-\mu\right)\Gamma\left(a+\nu\right)}\right)\\
&=\frac{1}{2(\nu-\mu)(a+\mu+\nu)\cos\pi a\Gamma\left(a\right)^2}\left(\frac{\Gamma(-\nu)\Gamma\left(a+\nu\right)}{\Gamma\left(\nu+\frac 12\right)\Gamma\left(\frac 12-a-\nu\right)}-\frac{\Gamma(-\mu)\Gamma(a+\mu)}{\Gamma\left(\mu+\frac 12\right)\Gamma\left(\frac 12-a-\mu\right)}\right)
\end{align}
となる. つまり, 以下を得る.
\begin{align} &\int_0^1C_{2\mu}^{(a)}(x)C_{2\nu}^{(a)}(x)(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{\sin 2\pi\mu\sin 2\pi\nu\left(\Gamma(-\nu)\Gamma\left(a+\nu\right)\Gamma\left(\frac 12-\mu\right)\Gamma\left(a+\mu+\frac 12\right)-\Gamma(-\mu)\Gamma\left(a+\mu\right)\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\nu+\frac 12\right)\right)}{8\pi^2(\nu-\mu)(a+\mu+\nu)\Gamma\left(a\right)^2}\\ &\int_0^1C_{2\mu}^{(a)}(x)(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{\sin\pi\mu\Gamma\left(a+\mu+\frac 12\right)(\Gamma(-\nu)\Gamma\left(a+\nu\right)-\Gamma(-\mu)\Gamma(a+\mu))}{2\pi(\nu-\mu)(a+\mu+\nu)\Gamma\left(a\right)^2\Gamma\left(\mu+\frac 12\right)}\\ &\int_0^1(C_{2\mu}^{(a)}(x)\cot\pi\mu-D_{2\mu}^{(a)}(x))(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{1}{2(\nu-\mu)(a+\mu+\nu)\cos\pi a\Gamma\left(a\right)^2}\left(\frac{\Gamma(-\nu)\Gamma\left(a+\nu\right)}{\Gamma\left(\nu+\frac 12\right)\Gamma\left(\frac 12-a-\nu\right)}-\frac{\Gamma(-\mu)\Gamma(a+\mu)}{\Gamma\left(\mu+\frac 12\right)\Gamma\left(\frac 12-a-\mu\right)}\right) \end{align}
特に, $\mu\to\nu$とすると, 以下を得る.
\begin{align} &\int_0^1C_{2\nu}^{(a)}(x)^2(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{\sin^2 2\pi\nu\Gamma(-\nu)\Gamma\left(\frac 12-\nu\right)\Gamma\left(a+\nu\right)\Gamma\left(a+\nu+\frac 12\right)\left(\psi\left(\frac 12-\nu\right)-\psi\left(a+\nu+\frac 12\right)-\psi(-\nu)+\psi\left(a+\nu\right)\right)}{8\pi^2(a+2\nu)\Gamma\left(a\right)^2}\\ &\int_0^1C_{2\nu}^{(a)}(x)(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{\sin\pi\nu\Gamma\left(a+\nu+\frac 12\right)\Gamma(-\nu)\Gamma\left(a+\nu\right)(\psi(a+\nu)-\psi(-\nu))}{2\pi(a+2\nu)\Gamma\left(a\right)^2\Gamma\left(\nu+\frac 12\right)}\\ &\int_0^1(C_{2\nu}^{(a)}(x)\cot\pi\nu-D_{2\nu}^{(a)}(x))^2(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{\Gamma(-\nu)\Gamma\left(a+\nu\right)\left(\psi(a+\nu)-\psi(-\nu)-\psi\left(\nu+\frac 12\right)+\psi\left(\frac 12-a-\nu\right)\right)}{2(a+2\nu)\cos\pi a\Gamma\left(a\right)^2\Gamma\left(\nu+\frac 12\right)\Gamma\left(\frac 12-a-\nu\right)} \end{align}
第1種, 第2種のLegendre関数をそれぞれ
\begin{align}
P_{\nu}(x)&:=C_{\nu}^{\left(\frac 12\right)}(x)\\
Q_{\nu}(x)&:=D_{\nu}^{\left(\frac 12\right)}(x)
\end{align}
と定義する. 定理1において$a\mapsto \frac 12$とすると,以下を得る.
\begin{align} &\int_0^1P_{2\mu}(x)P_{2\nu}(x)\,dx\\ &=\frac{\sin 2\pi\mu\sin 2\pi\nu\left(\Gamma(-\nu)\Gamma\left(\frac 12+\nu\right)\Gamma\left(\frac 12-\mu\right)\Gamma\left(\mu+1\right)-\Gamma(-\mu)\Gamma\left(\frac 12+\mu\right)\Gamma\left(\frac 12-\nu\right)\Gamma\left(\nu+1\right)\right)}{8\pi^3(\nu-\mu)\left(\frac 12+\mu+\nu\right)}\\ &\int_0^1P_{2\mu}(x)(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))\,dx\\ &=\frac{\sin\pi\mu\Gamma\left(\mu+1\right)(\Gamma(-\nu)\Gamma\left(\frac 12+\nu\right)-\Gamma(-\mu)\Gamma(\frac12+\mu))}{2\pi^2(\nu-\mu)\left(\frac 12+\mu+\nu\right)\Gamma\left(\mu+\frac 12\right)}\\ &\int_0^1(P_{2\mu}(x)\cot\pi\mu-Q_{2\mu}(x))(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))\,dx\\ &=\frac{\psi\left(\frac 12+\mu\right)+\psi\left(-\mu\right)-\psi\left(\frac 12+\nu\right)-\psi\left(-\nu\right)}{2\pi(\nu-\mu)\left(\frac 12+\mu+\nu\right)} \end{align}
系1において, $a\mapsto \frac 12$すると,
\begin{align}
&\int_0^1P_{2\nu}(x)^2\,dx\\
&=\frac{\sin^2 2\pi\nu\Gamma(-\nu)\Gamma\left(\frac 12-\nu\right)\Gamma\left(\frac 12+\nu\right)\Gamma\left(\nu+1\right)\left(\psi\left(\frac 12-\nu\right)-\psi\left(\nu+1\right)-\psi(-\nu)+\psi\left(\frac 12+\nu\right)\right)}{4\pi^3(4\nu+1)}\\
&=\frac{\sin2\pi\nu\left(\psi\left(\nu+1\right)+\psi(-\nu)-\psi\left(\frac 12-\nu\right)-\psi\left(\frac 12+\nu\right)\right)}{2\pi(4\nu+1)}\\
&\int_0^1P_{2\nu}(x)(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))\,dx\\
&=\frac{\sin\pi\nu\Gamma\left(\nu+1\right)\Gamma(-\nu)\left(\psi\left(\frac 12+\nu\right)-\psi(-\nu)\right)}{\pi^2(4\nu+1)}\\
&=\frac{\psi(-\nu)-\psi\left(\frac 12+\nu\right)}{\pi(4\nu+1)}\\
&\int_0^1(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))^2\,dx\\
&=\frac{\psi'(-\nu)-\psi'\left(\frac 12+\nu\right)}{\pi^2(4\nu+1)}
\end{align}
つまり以下を得る.
\begin{align} \int_0^1P_{2\nu}(x)^2\,dx&=\frac{\sin2\pi\nu\left(\psi\left(\nu+1\right)+\psi(-\nu)-\psi\left(\frac 12-\nu\right)-\psi\left(\frac 12+\nu\right)\right)}{2\pi(4\nu+1)}\\ \int_0^1P_{2\nu}(x)(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))\,dx&=\frac{\psi(-\nu)-\psi\left(\frac 12+\nu\right)}{\pi(4\nu+1)}\\ \int_0^1(P_{2\nu}(x)\cot\pi\nu-Q_{2\nu}(x))^2\,dx&=\frac{\psi'(-\nu)-\psi'\left(\frac 12+\nu\right)}{\pi^2(4\nu+1)} \end{align}
特に, 1番上の式において, $\nu\mapsto -\frac 14$とすると,
\begin{align}
\int_0^1P_{-\frac 12}(x)^2\,dx&=\frac{\psi'\left(\frac 14\right)-\psi'\left(\frac 34\right)}{4\pi}\\
&=\frac{4\beta(2)}{\pi}
\end{align}
つまり,
\begin{align}
\int_0^{\frac 12}\F21{\frac 12,\frac 12}1{x}^2\,dx=&\frac{2\beta(2)}{\pi}
\end{align}
を得る. ここで,
\begin{align}
\beta(2):=\sum_{0\leq n}\frac{(-1)^n}{(2n+1)^2}
\end{align}
はCatalanの定数である.