前の記事 でJacobi関数のJacobi多項式による展開を与えた. 今回はそれを用いてJacobi関数の2つの積の積分を計算したいと思う. まず, 前の記事 の定理2をまとめると以下のように表される.
\begin{align} P_{\nu}^{(a,b)}(x)&=\frac{\Gamma(a+\nu+1)\Gamma(a+b+1)\sin\pi\nu}{\Gamma(a+1)\Gamma(a+b+\nu+1)\pi}\\ &\qquad\cdot\sum_{0\leq n}\frac{(-1)^n(a+b+1)_n}{(a+1)_n}\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)P_n^{(a,b)}(x)\\ P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x)&=\frac{\Gamma(b+\nu+1)\Gamma(a+b+1)}{\Gamma(b+1)\Gamma(a+b+\nu+1)\pi}\\ &\qquad\cdot\sum_{0\leq n}\frac{(a+b+1)_n}{(b+1)_n}\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)P_n^{(a,b)}(x) \end{align}
この1つ目の式と
Jacobi多項式の直交性
\begin{align}
&\int_{-1}^1P_m^{(a,b)}(x)P_n^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}}{2n+a+b+1}\frac{\Gamma(a+n+1)\Gamma(b+n+1)}{n!\Gamma(a+b+n+1)}
\end{align}
を用いることによって,
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)P_{\nu}^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\
&=\frac{\Gamma(a+\mu+1)\Gamma(a+\nu+1)\Gamma(a+b+1)^2\sin\pi\mu\sin\pi\nu}{\Gamma(a+1)^2\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(a+b+1)_n^2}{(a+1)_n^2}\left(\frac 1{\mu-n}-\frac 1{n+a+b+\mu+1}\right)\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)\\
&\qquad\cdot\frac{2^{a+b+1}}{2n+a+b+1}\frac{\Gamma(a+n+1)\Gamma(b+n+1)}{n!\Gamma(a+b+n+1)}\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(a+\nu+1)\Gamma(b+1)\Gamma(a+b+1)\sin\pi\mu\sin\pi\nu}{\Gamma(a+1)\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)\frac{1}{(\mu-n)(n+a+b+\mu+1)}\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(a+\nu+1)\Gamma(b+1)\Gamma(a+b+1)\sin\pi\mu\sin\pi\nu}{(a+b+2\mu+1)\Gamma(a+1)\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)\left(\frac 1{\mu-n}+\frac 1{n+a+b+\mu+1}\right)\\
\end{align}
ここで,
\begin{align}
&\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)\left(\frac 1{\mu-n}+\frac 1{n+a+b+\mu+1}\right)\\
&=\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{(\mu-n)(\nu-n)}-\frac 1{(n+a+b+\mu+1)(n+a+b+\nu+1)}\right)\\
&\qquad+\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{(\nu-n)(n+a+b+\mu+1)}-\frac 1{(\mu-n)(n+a+b+\nu+1)}\right)\\
&=\frac 1{\nu-\mu}\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{\mu-n}-\frac 1{\nu-n}-\frac 1{n+a+b+\mu+1}+\frac1{n+a+b+\nu+1}\right)\\
&\qquad+\frac 1{a+b+\mu+\nu+1}\sum_{0\leq n}\frac{(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{\nu-n}+\frac 1{n+a+b+\mu+1}-\frac 1{\mu-n}-\frac 1{n+a+b+\nu+1}\right)\\
&=\left(\frac 1{\nu-\mu}-\frac 1{a+b+\mu+\nu+1}\right)\\
&\qquad\cdot\sum_{0\leq n}\frac{(2n+a+b+1)(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{(\mu-n)(n+a+b+\mu+1)}-\frac 1{(\nu-n)(n+a+b+\nu+1)}\right)
\end{align}
ここで, Dougallの${}_5F_4$和公式より,
\begin{align}
&\sum_{0\leq n}\frac{(2n+a+b+1)(b+1,a+b+1)_n}{n!(a+1)_n}\frac 1{(\mu-n)(n+a+b+\mu+1)}\\
&=\frac{a+b+1}{\mu(a+b+\mu+1)}\F54{a+b+1,1+\frac{a+b+1}2,b+1,-\mu,a+b+\mu+1}{\frac{a+b+1}2,a+1,1-\mu,a+b+\mu+2}1\\
&=\frac{a+b+1}{\mu(a+b+\mu+1)}\frac{\Gamma(a+1)\Gamma(1-\mu)\Gamma(a+b+\mu+2)\Gamma(-b)}{\Gamma(a+b+2)\Gamma(a+\mu+1)\Gamma(-b-\mu)}\\
&=-\frac{\Gamma(a+1)\Gamma(-\mu)\Gamma(a+b+\mu+1)\Gamma(-b)}{\Gamma(a+b+1)\Gamma(a+\mu+1)\Gamma(-b-\mu)}\\
\end{align}
であるから,
\begin{align}
&\left(\frac 1{\nu-\mu}-\frac 1{a+b+\mu+\nu+1}\right)\\
&\qquad\cdot\sum_{0\leq n}\frac{(2n+a+b+1)(b+1,a+b+1)_n}{n!(a+1)_n}\left(\frac 1{(\mu-n)(n+a+b+\mu+1)}-\frac 1{(\nu-n)(n+a+b+\nu+1)}\right)\\
&=\left(\frac 1{\nu-\mu}-\frac 1{a+b+\mu+\nu+1}\right)\left(\frac{\Gamma(a+1)\Gamma(-\nu)\Gamma(a+b+\nu+1)\Gamma(-b)}{\Gamma(a+b+1)\Gamma(a+\nu+1)\Gamma(-b-\nu)}-\frac{\Gamma(a+1)\Gamma(-\mu)\Gamma(a+b+\mu+1)\Gamma(-b)}{\Gamma(a+b+1)\Gamma(a+\mu+1)\Gamma(-b-\mu)}\right)\\
&=\frac{\Gamma(a+1)\Gamma(-b)}{\Gamma(a+b+1)}\left(\frac 1{\nu-\mu}-\frac 1{a+b+\mu+\nu+1}\right)\left(\frac{\Gamma(-\nu)\Gamma(a+b+\nu+1)}{\Gamma(a+\nu+1)\Gamma(-b-\nu)}-\frac{\Gamma(-\mu)\Gamma(a+b+\mu+1)}{\Gamma(a+\mu+1)\Gamma(-b-\mu)}\right)
\end{align}
これを代入して,
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)P_{\nu}^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(a+\nu+1)\Gamma(b+1)\Gamma(a+b+1)\sin\pi\mu\sin\pi\nu}{(a+b+2\mu+1)\Gamma(a+1)\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\frac{\Gamma(a+1)\Gamma(-b)}{\Gamma(a+b+1)}\left(\frac 1{\nu-\mu}-\frac 1{a+b+\mu+\nu+1}\right)\left(\frac{\Gamma(-\nu)\Gamma(a+b+\nu+1)}{\Gamma(a+\nu+1)\Gamma(-b-\nu)}-\frac{\Gamma(-\mu)\Gamma(a+b+\mu+1)}{\Gamma(a+\mu+1)\Gamma(-b-\mu)}\right)\\
&=\frac{2^{a+b+1}\sin\pi\mu\sin\pi\nu}{(\nu-\mu)(a+b+\mu+\nu+1)\pi\sin\pi b}\left(\frac{\Gamma(-\mu)\Gamma(a+\nu+1)}{\Gamma(-b-\mu)\Gamma(a+b+\nu+1)}-\frac{\Gamma(-\nu)\Gamma(a+\mu+1)}{\Gamma(-b-\nu)\Gamma(a+b+\mu+1)}\right)
\end{align}
となる.
前の記事
で示した対称性
\begin{align}
P_{\nu}^{(a,b)}(-x)&=P_{\nu}^{(b,a)}(x)\cos\pi\nu-Q_{\nu}^{(b,a)}(x)\sin\pi\nu
\end{align}
を用いると, $a,b$を入れ替えて
\begin{align}
&\int_{-1}^1(P_{\mu}^{(a,b)}(x)\cot\pi\mu-Q_{\mu}^{(a,b)}(x))(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}}{(\nu-\mu)(a+b+\mu+\nu+1)\pi\sin\pi a}\left(\frac{\Gamma(-\mu)\Gamma(b+\nu+1)}{\Gamma(-a-\mu)\Gamma(a+b+\nu+1)}-\frac{\Gamma(-\nu)\Gamma(b+\mu+1)}{\Gamma(-a-\nu)\Gamma(a+b+\mu+1)}\right)
\end{align}
も得られる. 次に, 定理1の1つ目の式と2つ目の式を用いて同様に
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\
&=\frac{\Gamma(a+\mu+1)\Gamma(b+\nu+1)\Gamma(a+b+1)^2\sin\pi\mu}{\Gamma(a+1)\Gamma(b+1)\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(-1)^n(a+b+1)_n^2}{(a+1,b+1)_n}\left(\frac 1{\mu-n}-\frac 1{n+a+b+\mu+1}\right)\left(\frac 1{\nu-n}-\frac 1{n+a+b+\nu+1}\right)\\
&\qquad\cdot\frac{2^{a+b+1}}{2n+a+b+1}\frac{\Gamma(a+n+1)\Gamma(b+n+1)}{n!\Gamma(a+b+n+1)}\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(b+\nu+1)\Gamma(a+b+1)\sin\pi\mu}{\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\frac 1{(\nu-\mu)(a+b+\mu+\nu+1)}\sum_{0\leq n}\frac{(-1)^n(2n+a+b+1)(a+b+1)_n}{n!}\left(\frac 1{(\mu-n)(n+a+b+\mu+1)}-\frac 1{(\nu-n)(n+a+b+\nu+1)}\right)
\end{align}
ここで, Dougallの${}_5F_4$和公式のlimitting caseより
\begin{align}
&\sum_{0\leq n}\frac{(-1)^n(2n+a+b+1)(a+b+1)_n}{n!}\frac 1{(\mu-n)(n+a+b+\mu+1)}\\
&=\frac{a+b+1}{\mu(a+b+\mu+1)}\F43{a+b+1,1+\frac{a+b+1}2,-\mu,a+b+\mu+1}{\frac{a+b+1}2,1-\mu,a+b+\mu+2}{-1}\\
&=\frac{a+b+1}{\mu(a+b+\mu+1)}\frac{\Gamma(1-\mu)\Gamma(a+b+\mu+2)}{\Gamma(a+b+2)}\\
&=-\frac{\Gamma(-\mu)\Gamma(a+b+\mu+1)}{\Gamma(a+b+1)}
\end{align}
であるからこれを代入して,
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(b+\nu+1)\Gamma(a+b+1)\sin\pi\mu}{\Gamma(a+b+\mu+1)\Gamma(a+b+\nu+1)\pi^2}\\
&\qquad\cdot\frac 1{(\nu-\mu)(a+b+\mu+\nu+1)}\left(\frac{\Gamma(-\nu)\Gamma(a+b+\nu+1)}{\Gamma(a+b+1)}-\frac{\Gamma(-\mu)\Gamma(a+b+\mu+1)}{\Gamma(a+b+1)}\right)\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(b+\nu+1)\sin\pi\mu}{\pi^2(\nu-\mu)(a+b+\mu+\nu+1)}\left(\frac{\Gamma(-\nu)}{\Gamma(a+b+\mu+1)}-\frac{\Gamma(-\mu)}{\Gamma(a+b+\nu+1)}\right)
\end{align}
まとめると以下を得る.
\begin{align} &\int_{-1}^1P_{\mu}^{(a,b)}(x)P_{\nu}^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}\sin\pi\mu\sin\pi\nu}{(\nu-\mu)(a+b+\mu+\nu+1)\pi\sin\pi b}\left(\frac{\Gamma(-\mu)\Gamma(a+\nu+1)}{\Gamma(-b-\mu)\Gamma(a+b+\nu+1)}-\frac{\Gamma(-\nu)\Gamma(a+\mu+1)}{\Gamma(-b-\nu)\Gamma(a+b+\mu+1)}\right)\\ &\int_{-1}^1P_{\mu}^{(a,b)}(x)(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(b+\nu+1)\sin\pi\mu}{\pi^2(\nu-\mu)(a+b+\mu+\nu+1)}\left(\frac{\Gamma(-\nu)}{\Gamma(a+b+\mu+1)}-\frac{\Gamma(-\mu)}{\Gamma(a+b+\nu+1)}\right)\\ &\int_{-1}^1(P_{\mu}^{(a,b)}(x)\cot\pi\mu-Q_{\mu}^{(a,b)}(x))(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}}{(\nu-\mu)(a+b+\mu+\nu+1)\pi\sin\pi a}\left(\frac{\Gamma(-\mu)\Gamma(b+\nu+1)}{\Gamma(-a-\mu)\Gamma(a+b+\nu+1)}-\frac{\Gamma(-\nu)\Gamma(b+\mu+1)}{\Gamma(-a-\nu)\Gamma(a+b+\mu+1)}\right) \end{align}
これらから
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)Q_{\nu}^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\
&\int_{-1}^1Q_{\mu}^{(a,b)}(x)Q_{\nu}^{(a,b)}(x)(1-x)^a(1+x)^b\,dx\\
\end{align}
を表すことができるが, それは複雑になるので定理2の形でまとめておく.
前の記事
で示した対称性
\begin{align}
P_{\nu}^{(a,b)}(-x)&=P_{\nu}^{(b,a)}(x)\cos\pi\nu-Q_{\nu}^{(b,a)}(x)\sin\pi\nu
\end{align}
を用いると, 2つ目の式は
\begin{align}
&\int_{-1}^1P_{\mu}^{(a,b)}(x)P_{\nu}^{(b,a)}(-x)(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(a+\mu+1)\Gamma(b+\nu+1)\sin\pi\nu\sin\pi\mu}{\pi^2(\nu-\mu)(a+b+\mu+\nu+1)}\left(\frac{\Gamma(-\nu)}{\Gamma(a+b+\mu+1)}-\frac{\Gamma(-\mu)}{\Gamma(a+b+\nu+1)}\right)\\
\end{align}
と対称的な形で表すこともできる.
定理2において, $\mu\to\nu$とすると,
\begin{align}
&\int_{-1}^1P_{\nu}^{(a,b)}(x)^2(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\sin^2\pi\nu}{(a+b+2\nu+1)\pi\sin\pi b}\frac{\Gamma(-\nu)\Gamma(a+\nu+1)(\psi(-\nu)-\psi(-b-\nu)+\psi(a+\nu+1)-\psi(a+b+\nu+1))}{\Gamma(-b-\nu)\Gamma(a+b+\nu+1)}\\
&=\frac{2^{a+b+1}\sin\pi\nu\Gamma(a+\nu+1)(-\psi(-\nu)+\psi(-b-\nu)-\psi(a+\nu+1)+\psi(a+b+\nu+1))}{(a+b+2\nu+1)\sin\pi b\Gamma(\nu+1)\Gamma(-b-\nu)\Gamma(a+b+\nu+1)}\\
&\int_{-1}^1P_{\nu}^{(a,b)}(x)(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(a+\nu+1)\Gamma(b+\nu+1)\sin\pi\nu}{\pi^2(a+b+2\nu+1)}\frac{\Gamma(-\nu)(\psi(a+b+\nu+1)-\psi(-\nu))}{\Gamma(a+b+\nu+1)}\\
&=\frac{2^{a+b+1}\Gamma(a+\nu+1)\Gamma(b+\nu+1)(\psi(-\nu)-\psi(a+b+\nu+1))}{\pi(a+b+2\nu+1)\Gamma(\nu+1)\Gamma(a+b+\nu+1)}\\
&\int_{-1}^1(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))^2(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(-\nu)\Gamma(b+\nu+1)(\psi(-\nu)-\psi(-a-\nu)+\psi(b+\nu+1)-\psi(a+b+\nu+1))}{\pi(a+b+2\nu+1)\sin\pi a\Gamma(-a-\nu)\Gamma(a+b+\nu+1)}
\end{align}
つまり, 以下を得る.
\begin{align} &\int_{-1}^1P_{\nu}^{(a,b)}(x)^2(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}\sin\pi\nu\Gamma(a+\nu+1)(-\psi(-\nu)+\psi(-b-\nu)-\psi(a+\nu+1)+\psi(a+b+\nu+1))}{(a+b+2\nu+1)\sin\pi b\Gamma(\nu+1)\Gamma(-b-\nu)\Gamma(a+b+\nu+1)}\\ &\int_{-1}^1P_{\nu}^{(a,b)}(x)(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}\Gamma(a+\nu+1)\Gamma(b+\nu+1)(\psi(-\nu)-\psi(a+b+\nu+1))}{\pi(a+b+2\nu+1)\Gamma(\nu+1)\Gamma(a+b+\nu+1)}\\ &\int_{-1}^1(P_{\nu}^{(a,b)}(x)\cot\pi\nu-Q_{\nu}^{(a,b)}(x))^2(1-x)^a(1+x)^b\,dx\\ &=\frac{2^{a+b+1}\Gamma(-\nu)\Gamma(b+\nu+1)(\psi(-\nu)-\psi(-a-\nu)+\psi(b+\nu+1)-\psi(a+b+\nu+1))}{\pi(a+b+2\nu+1)\sin\pi a\Gamma(-a-\nu)\Gamma(a+b+\nu+1)} \end{align}
2つ目の式は
\begin{align}
&\int_{-1}^1P_{\nu}^{(a,b)}(x)P_{\nu}^{(b,a)}(-x)(1-x)^a(1+x)^b\,dx\\
&=\frac{2^{a+b+1}\Gamma(a+\nu+1)\Gamma(b+\nu+1)\sin\pi\nu(\psi(-\nu)-\psi(a+b+\nu+1))}{\pi(a+b+2\nu+1)\Gamma(\nu+1)\Gamma(a+b+\nu+1)}
\end{align}
と表すこともできる.
前の記事
で示したように, 超球関数とJacobi関数の間には
\begin{align}
P_{\nu}^{(a,a)}(x)&=\frac{\Gamma(a+\nu+1)\Gamma(2a+1)}{\Gamma(a+1)\Gamma(2a+1+\nu)}C_{\nu}^{\left(a+\frac 12\right)}(x)\\
Q_{\nu}^{(a,a)}(x)&=\frac{\Gamma(a+\nu+1)\Gamma(2a+1)}{\Gamma(a+1)\Gamma(2a+1+\nu)}D_{\nu}^{\left(a+\frac 12\right)}(x)
\end{align}
の関係がある. これを用いると
\begin{align}
&\int_{-1}^1C_{\mu}^{(a)}(x)C_{\nu}^{(a)}(x)(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\Gamma(a+\frac 12)\Gamma(2a+\mu)}{\Gamma(a+\mu+\frac 12)\Gamma(2a)}\frac{\Gamma(a+\frac 12)\Gamma(2a+\nu)}{\Gamma(a+\nu+\frac 12)\Gamma(2a)}\\
&\qquad\cdot\frac{2^{2a}\sin\pi\mu\sin\pi\nu}{(\nu-\mu)(2a+\mu+\nu)\pi\cos\pi a}\left(\frac{\Gamma(-\nu)\Gamma\left(a+\mu+\frac 12\right)}{\Gamma\left(\frac 12-a-\nu\right)\Gamma(2a+\mu)}-\frac{\Gamma(-\mu)\Gamma\left(a+\nu+\frac 12\right)}{\Gamma\left(\frac 12-a-\mu\right)\Gamma(2a+\nu)}\right)\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\mu\sin\pi\nu\left(\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\cos\pi(a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2\cos\pi a}\\
&\int_{-1}^1C_{\mu}^{(a)}(x)(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{\Gamma(a+\frac 12)\Gamma(2a+\mu)}{\Gamma(a+\mu+\frac 12)\Gamma(2a)}\frac{\Gamma(a+\frac 12)\Gamma(2a+\nu)}{\Gamma(a+\nu+\frac 12)\Gamma(2a)}\\
&\qquad\cdot\frac{2^{2a}\Gamma\left(a+\mu+\frac 12\right)\Gamma\left(a+\nu+\frac 12\right)\sin\pi\mu}{\pi^2(\nu-\mu)(2a+\mu+\nu)}\left(\frac{\Gamma(-\nu)}{\Gamma(2a+\mu)}-\frac{\Gamma(-\mu)}{\Gamma(2a+\nu)}\right)\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\mu\left(\Gamma(-\nu)\Gamma(2a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2}\\
&\int_{-1}^1(C_{\mu}^{(a)}(x)\cot\pi\mu-D_{\mu}^{(a)}(x))(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\left(\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\cos\pi(a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2\cos\pi a}\\
\end{align}
つまり, 以下を得る.
\begin{align} &\int_{-1}^1C_{\mu}^{(a)}(x)C_{\nu}^{(a)}(x)(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\mu\sin\pi\nu\left(\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\cos\pi(a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2\cos\pi a}\\ &\int_{-1}^1C_{\mu}^{(a)}(x)(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\mu\left(\Gamma(-\nu)\Gamma(2a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2}\\ &\int_{-1}^1(C_{\mu}^{(a)}(x)\cot\pi\mu-D_{\mu}^{(a)}(x))(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\left(\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\cos\pi(a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2\cos\pi a} \end{align}
この2つ目の式は
\begin{align}
&\int_{-1}^1C_{\mu}^{(a)}(x)C_{\nu}^{(a)}(-x)(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\nu\sin\pi\mu\left(\Gamma(-\nu)\Gamma(2a+\nu)-\Gamma(-\mu)\Gamma(2a+\mu)\right)}{\pi^2(\nu-\mu)(2a+\mu+\nu)\Gamma(2a)^2}
\end{align}
と対称的な形で表すこともできる. 定理1において特に$\mu\to \nu$とすると
\begin{align}
&\int_{-1}^1C_{\nu}^{(a)}(x)^2(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin^2\pi\nu\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)(-\psi(-\nu)+\psi(2a+\nu)-\pi\tan\pi(a+\nu))}{\pi^2(2a+2\nu)\Gamma(2a)^2\cos\pi a}\\
&=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\sin\pi\nu\Gamma(2a+\nu)\cos\pi(a+\nu)(\psi(-\nu)-\psi(2a+\nu)+\pi\tan\pi(a+\nu))}{\pi(a+\nu)\Gamma(\nu+1)\Gamma(2a)^2\cos\pi a}\\
&\int_{-1}^1C_{\nu}^{(a)}(x)(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{2^{2a}\Gamma\left(a+\frac 12\right)^2\sin\pi\nu\Gamma(-\nu)\Gamma(2a+\nu)(-\psi(-\nu)+\psi(2a+\nu))}{2\pi^2(a+\nu)\Gamma(2a)^2}\\
&=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\Gamma(2a+\nu)(\psi(-\nu)-\psi(2a+\nu))}{\pi(a+\nu)\Gamma(\nu+1)\Gamma(2a)^2}\\
&\int_{-1}^1(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))^2(1-x^2)^{a-\frac 12}\,dx\\
&=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)(-\psi(-\nu)+\psi(2a+\nu)-\pi\tan\pi(a+\nu))}{\pi^2(a+\nu)\Gamma(2a)^2\cos\pi a}
\end{align}
つまり, 以下を得る.
\begin{align} &\int_{-1}^1C_{\nu}^{(a)}(x)^2(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\sin\pi\nu\Gamma(2a+\nu)\cos\pi(a+\nu)(\psi(-\nu)-\psi(2a+\nu)+\pi\tan\pi(a+\nu))}{\pi(a+\nu)\Gamma(\nu+1)\Gamma(2a)^2\cos\pi a}\\ &\int_{-1}^1C_{\nu}^{(a)}(x)(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\Gamma(2a+\nu)(\psi(-\nu)-\psi(2a+\nu))}{\pi(a+\nu)\Gamma(\nu+1)\Gamma(2a)^2}\\ &\int_{-1}^1(C_{\nu}^{(a)}(x)\cot\pi\nu-D_{\nu}^{(a)}(x))^2(1-x^2)^{a-\frac 12}\,dx\\ &=\frac{2^{2a-1}\Gamma\left(a+\frac 12\right)^2\Gamma(-\nu)\Gamma(2a+\nu)\cos\pi(a+\nu)(-\psi(-\nu)+\psi(2a+\nu)-\pi\tan\pi(a+\nu))}{\pi^2(a+\nu)\Gamma(2a)^2\cos\pi a} \end{align}
第1種, 第2種のLegendre関数を
\begin{align}
P_{\nu}(x)&:=C_{\nu}^{\left(\frac 12\right)}(x)\\
Q_{\nu}(x)&:=D_{\nu}^{\left(\frac 12\right)}(x)
\end{align}
と定義する. 定理3において$a\to \frac 12$とすると,
\begin{align}
&\int_{-1}^1P_{\mu}(x)P_{\nu}(x)\,dx\\
&=-\frac{2\sin\pi\mu\sin\pi\nu}{\pi^2(\nu-\mu)(\mu+\nu+1)}\left(2\psi(\nu+1)+\cot\pi\nu-2\psi(\mu+1)+\cot\pi\mu\right)\\
&=\frac{2\sin\pi\mu\sin\pi\nu}{\pi^2(\nu-\mu)(\mu+\nu+1)}\left(\psi(\mu+1)+\psi(-\mu)-\psi(\nu+1)-\psi(-\nu)\right)\\
&\int_{-1}^1P_{\mu}(x)(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))\,dx\\
&=\frac{2\sin\pi\mu\left(\Gamma(-\nu)\Gamma(1+\nu)-\Gamma(-\mu)\Gamma(1+\mu)\right)}{\pi^2(\nu-\mu)(\mu+\nu+1)}\\
&=\frac{2(\sin\pi\nu-\sin\pi\mu)}{\pi(\nu-\mu)(\mu+\nu+1)\sin\pi\nu}\\
&\int_{-1}^1(P_{\mu}(x)\cot\pi\mu- Q_{\mu}(x))(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))\,dx\\
&=\frac{2\left(\psi(\mu+1)+\psi(-\mu)-\psi(\nu+1)-\psi(-\nu)\right)}{\pi^2(\nu-\mu)(\mu+\nu+1)}
\end{align}
つまり, 以下を得る.
\begin{align} &\int_{-1}^1P_{\mu}(x)P_{\nu}(x)\,dx\\ &=\frac{2\sin\pi\mu\sin\pi\nu}{\pi^2(\nu-\mu)(\mu+\nu+1)}\left(\psi(\mu+1)+\psi(-\mu)-\psi(\nu+1)-\psi(-\nu)\right)\\ &\int_{-1}^1P_{\mu}(x)(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))\,dx\\ &=\frac{2(\sin\pi\nu-\sin\pi\mu)}{\pi(\nu-\mu)(\mu+\nu+1)\sin\pi\nu}\\ &\int_{-1}^1(P_{\mu}(x)\cot\pi\mu- Q_{\mu}(x))(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))\,dx\\ &=\frac{2\left(\psi(\mu+1)+\psi(-\mu)-\psi(\nu+1)-\psi(-\nu)\right)}{\pi^2(\nu-\mu)(\mu+\nu+1)} \end{align}
特に, $\mu\mapsto\nu$とすると以下を得る.
\begin{align} \int_{-1}^1P_{\nu}(x)^2\,dx&=\frac{2\sin^2\pi\nu}{\pi^2(2\nu+1)}\left(\psi'(-\nu)-\psi'(\nu+1)\right)\\ \int_{-1}^1P_{\nu}(x)(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))\,dx&=\frac{2\cot\pi\nu}{2\nu+1}\\ \int_{-1}^1(P_{\nu}(x)\cot\pi\nu-Q_{\nu}(x))^2\,dx&=\frac{2\left(\psi'(-\nu)-\psi'(\nu+1)\right)}{\pi^2(2\nu+1)} \end{align}