$$\newcommand{acoloneqq}[0]{\ &\hspace-2pt\coloneqq}
\newcommand{ar}[1]{\operatorname{ar{#1}}}
\newcommand{arc}[1]{\operatorname{arc{#1}}}
\newcommand{asupplement}[1]{&\hspace{#1}\textsf}
\newcommand{beginend}[2]{{\begin{#1}#2\end{#1}}}
\newcommand{bm}[0]{\boldsymbol}
\newcommand{bscolor}[1]{\color{var(--bs-#1)}}
\newcommand{bscolorbox}[1]{\colorbox{var(--bs-#1)}}
\newcommand{bsrowcolor}[1]{\rowcolor{var(--bs-#1)}}
\newcommand{C}[0]{\mathbb C}
\newcommand{Defarrow}[0]{\xLeftrightarrow{\textrm{def}}}
\newcommand{eocase}[1]{{n:\textsf{{#1}数}\land\chi:\textsf{{#1}指標}}}
\newcommand{fqty}[0]{\!\qty}
\newcommand{hcfrac}[3]{{\frac{#1}{#2}\genfrac{}{}0{}{}{#3}}}
\newcommand{hen}[1]{{(\textrm{{#1}辺})}}
\newcommand{hygeo}[6]{{{}_{#1}{#2}_{#3}{\qty[\beginend{matrix*}{#4\\ #5}\ ;{#6}]}}}
\newcommand{In}[0]{\in\mathbb}
\newcommand{kfrac}[0]{\mathop{\Large\raise-.8pt{\textrm K}}}
\newcommand{Kfrac}[0]{\mathop{\huge\raise-2.2pt{\textrm K}}}
\newcommand{kome}[0]{\textreferencemark}
\newcommand{leftshiftarrow}[0]{{\substack{\curvearrowright\\ \leftharpoondown}}}
\newcommand{lr}[3]{{\left#1{#2}\right#3}}
\newcommand{lvvr}[2]{\lr{#1}{\negmedspace\lr|{#2}|\negmedspace}}
\newcommand{N}[0]{\mathbb N}
\newcommand{newop}[1]{\DeclareMathOperator{#1}{#1}}
\newcommand{ot}[0]{\leftarrow}
\newcommand{P}[0]{\mathbb P}
\newcommand{Q}[0]{\mathbb Q}
\newcommand{qbt}[1]{{\quad\because\textsf{#1}}}
\newcommand{R}[0]{\mathbb R}
\newcommand{RANGE}[0]{}\newcommand{rangeex}[6][,]{{#2{#3}_{#5}#4#1\cdots#1#2{#3}_{#6}#4}}\newcommand{range}[2][,]{\rangeex[#1]{}{#2}{}}{}
\newcommand{REQUIRE}[0]{}\require{physics}{}
\newcommand{rightshiftarrow}[0]{{\substack{\curvearrowleft\\ \rightharpoondown}}}
\newcommand{rprod}[0]{\mathop{\prod\!\llap\coprod}}
\newcommand{sahen}[0]{\hen左}
\newcommand{STIRLING}[0]{}\newcommand{stirling}[3][]{{\qty[\beginend{matrix}{{#2}\\ {#3}}{#1}]}}\newcommand{Stirling}[3][]{{\qty{\beginend{matrix}{{#2}\\ {#3}}{#1}}}}{}
\newcommand{uhen}[0]{\hen右}
\newcommand{vbin}[1]{\mathbin{{#1}\!\llap|\ }}
\newcommand{Z}[0]{\mathbb Z}
\newcommand{zzCOMPLEXPARTS}[0]{}\let\Re\relax\newop{Re}\let\Im\relax\newop{Im}{}
$$
定理
$N\ge2,n\ge1$
$(\eocase偶)\lor(\eocase奇)$
$\displaystyle L(n,\chi) =
-\frac1{2\cdot(n-1)!}\qty(-\frac\pi N)^n
\sum_{k=1}^{N-1} \chi(k)\cot^{(n-1)}\frac{\pi k}N$
補題
$\displaystyle \sum_{k=0}^\infty \qty[(z+k)^{-n}+(z-k-1)^{-n}] = -\frac{(-\pi)^n}{(n-1)!}\cot^{(n-1)}(\pi z)$
三角関数の部分分数展開
より、
$\displaystyle \pi\cot(\pi z) =
\lim_{j\to\infty} \sum_{|k|\le j} \frac1{z+k} =
\sum_{k=0}^\infty \qty(\frac1{z+k}+\frac1{z-k-1})$
これを$n-1$階微分する。
証明
$\beginend{align}{
\sahen &=
\sum_{j=0}^\infty \sum_{k=1}^{N-1}
\chi(k)(Nj+k)^{-n} \\&=
\frac12\sum_{j=0}^\infty \sum_{k=1}^{N-1}
\qty[\chi(k)(Nj+k)^{-n}+\chi(N-k)(Nj+N-k)^{-n}] \\&=
\frac12\sum_{j=0}^\infty \sum_{k=1}^{N-1}
\chi(k)\fqty[(Nj+k)^{-n}+(-1)^n(Nj+N-k)^{-n}]
\qbt{$n$と$\chi$の偶奇性の一致。} \\&=
\frac{N^{-n}}2\sum_{k=1}^{N-1} \chi(k)\sum_{j=0}^\infty
\qty[\qty(\frac kN+j)^{-n}+\qty(\frac kN-j-1)^{-n}] \\&=
\uhen \qbt{補題2}
}$