$a_{ij}\in\mathbb{R}$を$(i,j)$成分とする$n$次正方行列を$[a_{ij}]$で表わす.
閉区間$[a,b]$上で定義された任意の連続函数$f_{1},\ldots,f_{n},g_{1},\ldots,g_{n}$に対して,
$$
\det[(f_{i},g_{j})] = \frac{1}{n!} \int_{a}^{b}\cdots\int_{a}^{b} \det[f_{i}(x_{j})] \det[g_{i}(x_{j})] \,\d{x_{1}}\cdots \d{x_{n}}$$
が成り立つ.ただし
$$
(f,g) \coloneqq \int_{a}^{b} f(x)g(x)\,\d{x}$$
である.
\begin{align} \mathrm{RHS} &= \frac{1}{n!}\sum_{\sigma,\tau\in\mathfrak{S}_{n}} \sgn(\sigma)\sgn(\tau)\int_{a}^{b}\cdots\int_{a}^{b} f_{1}(x_{\sigma(1)}) \cdots f_{n}(x_{\sigma(n)}) g_{1}(x_{\tau(1)}) \cdots g_{n}(x_{\tau(n)}) \,\d{x_{1}} \cdots \d{x_{n}} \\ &= \frac{1}{n!}\sum_{\sigma,\tau\in\mathfrak{S}_{n}} \sgn(\sigma)\sgn(\tau^{-1}) \int_{a}^{b} f_{1}(x_{\sigma(1)})g_{\tau^{-1}(\sigma(1))}(x_{\sigma(1)}) \,\d{x_{\sigma(1)}} \cdots \int_{a}^{b} f_{n}(x_{\sigma(n)})g_{\tau^{-1}(\sigma(n))}(x_{\sigma(n)})\,\d{x_{\sigma(n)}} \\ &= \frac{1}{n!}\sum_{\sigma\in\mathfrak{S}_{n}} \sum_{\tau\in\mathfrak{S}_{n}} \sgn(\tau^{-1}\circ\sigma) (f_{1},g_{\tau^{-1}\circ\sigma}) \cdots (f_{n},g_{\tau^{-1}\circ\sigma}) \\ &= \frac{1}{n!} \sum_{\sigma\in\mathfrak{S}_{n}} \det[(f_{i},g_{j})] \\ &= \mathrm{LHS}. \end{align}
$g_{i} \coloneqq f_{i}$として直ちに次を得る(cf. satake p.118):
$$ \det\left[\int_{a}^{b} f_{i}(x)f_{j}(x)\,\d{x}\right] = \frac{1}{n!}\int_{a}^{b}\cdots\int_{a}^{b} (\det[f_{i}(x_{j})])^{2} \,\d{x_{1}}\cdots\d{x_{n}}.$$