$$\newcommand{arccot}[0]{\mathrm{arccot}}
\newcommand{arccsc}[0]{\mathrm{arccsc}}
\newcommand{arcosh}[0]{\mathrm{arcosh}}
\newcommand{arcoth}[0]{\mathrm{arcoth}}
\newcommand{arcsch}[0]{\mathrm{arcsch}}
\newcommand{arcsec}[0]{\mathrm{arcsec}}
\newcommand{arsech}[0]{\mathrm{arsech}}
\newcommand{arsinh}[0]{\mathrm{arsinh}}
\newcommand{artanh}[0]{\mathrm{artanh}}
\newcommand{ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{class}[3]{C^{#1}\left(#2;#3\right)}
\newcommand{close}[2]{\left[#1,#2\right]}
\newcommand{closeopen}[2]{\left[#1,#2\right[}
\newcommand{csch}[0]{\mathrm{csch}}
\newcommand{curly}[1]{\left\{#1\right\}}
\newcommand{d}[0]{\displaystyle}
\newcommand{D}[0]{\mathbb{D}}
\newcommand{dd}[0]{\mathrm{d}}
\newcommand{doublevartical}[1]{\left\lVert#1\right\rVert}
\newcommand{dv}[1]{\frac{\mathrm{d}}{\mathrm{d}#1}}
\newcommand{eq}[1]{{}^\exists#1\ \mathrm{s.t.}\ }
\newcommand{floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{half}[1]{\frac{#1}{2}}
\newcommand{halfpi}[0]{\frac{\pi}{2}}
\newcommand{hard}[1]{\left[#1\right]}
\newcommand{map}[2]{\mathrm{Map}\left(#1,#2\right)}
\newcommand{open}[2]{\left]#1,#2\right[}
\newcommand{openclose}[2]{\left]#1,#2\right]}
\newcommand{pdv}[1]{\frac{\partial}{\partial#1}}
\newcommand{pointy}[1]{\left\langle#1\right\rangle}
\newcommand{round}[1]{\left(#1\right)}
\newcommand{sech}[0]{\mathrm{sech}}
\newcommand{ueq}[1]{{}^{\exists!}#1\ \mathrm{s.t.}\}
\newcommand{uq}[1]{{}^\forall#1,\ }
\newcommand{vartical}[1]{\left\lvert#1\right\rvert}
$$
@Apppp1663051
さんがツイートした
こちらの級数
の一般化とその解説です.
$z\in\mathbb{C}$,$a\in\mathbb{C}$とし,$\displaystyle0<\abs{z}\leq\frac{1}{4}$,$\mathfrak{R}a>0$を満たすとします.このとき以下の等式が成り立ちます.
$\displaystyle\sum_{n=0}^\infty\frac{\binom{2n}{n}}{n+a}z^n=\frac{1}{\left(4z\right)^a}\mathrm{B}_{4z}\left(a,\frac{1}{2}\right)$
ここで,$\mathrm{B}_z\left(p,q\right)$は不完全ベータ関数です.
解説
\begin{align*}
&\sum_{n=0}^\infty\frac{\binom{2n}{n}}{n+a}z^n\\
=&\sum_{n=0}^\infty\binom{2n}{n}z^n\int_0^1t^{n+a-1}\dd t\\
=&\sum_{n=0}^\infty\int_0^1t^{a-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}\dd t\\
=&\int_0^1\sum_{n=0}^\infty t^{a-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}\dd t\quad\left(\begin{multlined}
\because\abs{\sum_{n=0}^\infty t^{a-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}}\leq\sum_{n=0}^\infty t^{\mathfrak{R}a-1}\binom{-\frac{1}{2}}{n}\left(-t\right)^n=\frac{t^{\mathfrak{R}a-1}}{\sqrt{1-t}}\text{であり,}\\\int_0^1\frac{t^{\mathfrak{R}a-1}}{\sqrt{1-t}}\dd t\leq\int_0^{\frac{1}{2}}\frac{t^{\mathfrak{R}a-1}}{\sqrt{1-\frac{1}{2}}}\dd t+\int_{\frac{1}{2}}^1\frac{1^{\mathfrak{R}a}\left(\frac{1}{2}\right)^{-1}}{\sqrt{1-t}}\dd t=\sqrt{2}\frac{\left(\frac{1}{2}\right)^{\mathfrak{R}a}}{\mathfrak{R}a}+\frac{4}{\sqrt{2}}<\infty\\\text{より}\frac{t^{\mathfrak{R}a-1}}{\sqrt{1-t}}\text{は}t\text{に関して}\left]0,1\right[\text{上可積分なので,Lebesgueの優収束定理より積分と総和は交換可能}\end{multlined}\right)\\
=&\int_0^1t^{a-1}\left(1-4zt\right)^{-\frac{1}{2}}\dd t\\
=&\int_0^{4z}\left(\frac{u}{4z}\right)^{a-1}\left(1-u\right)^{-\frac{1}{2}}\frac{\dd u}{4z}\\
=&\frac{1}{\left(4z\right)^a}\mathrm{B}_{4z}\left(a,\frac{1}{2}\right)\quad\left(\because\mathfrak{R}a>0\right)
\end{align*}
より,$\displaystyle\sum_{n=0}^\infty\frac{\binom{2n}{n}}{n+a}z^n=\frac{1}{\left(4z\right)^a}\mathrm{B}_{4z}\left(a,\frac{1}{2}\right)$です.
$z\in\mathbb{C}$とし,$\displaystyle0<\abs{z}\leq\frac{1}{4}$を満たすとします.このとき以下の等式が成り立ちます.
$\displaystyle\sum_{n=1}^\infty\frac{\binom{2n}{n}}{n}z^n=2\left(\log2-\log\left(1+\sqrt{1-4z}\right)\right)$
解説
\begin{align*}
&\sum_{n=1}^\infty\frac{\binom{2n}{n}}{n}z^n\\
=&\sum_{n=1}^\infty\binom{2n}{n}z^n\int_0^1t^{n-1}\dd t\\
=&\sum_{n=1}^\infty\int_0^1t^{-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}\dd t\\
=&\int_0^1\sum_{n=1}^\infty t^{-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}\dd t\quad\left(\begin{multlined}
\because\abs{\sum_{n=1}^\infty t^{-1}\binom{-\frac{1}{2}}{n}\left(-4zt\right)^{n}}\leq\sum_{n=1}^\infty t^{-1}\binom{-\frac{1}{2}}{n}\left(-t\right)^n=t^{-1}\left(\frac{1}{\sqrt{1-t}}-1\right)=\frac{1}{\left(1+\sqrt{1-t}\right)\sqrt{1-t}}\leq\frac{1}{2\sqrt{1-t}}\text{であり,}\\\int_0^1\frac{\dd t}{\sqrt{1-t}}=2<\infty\text{より}\frac{\dd t}{\sqrt{1-t}}\text{は}t\text{に関して}\left]0,1\right[\text{上可積分なので,Lebesgueの優収束定理より積分と総和は交換可能}\end{multlined}\right)\\
=&\int_0^1t^{-1}\left(\frac{1}{\sqrt{1-4zt}}-1\right)\dd t\\
=&\int_0^1\frac{4z}{\left(1+\sqrt{1-4zt}\right)\sqrt{1-4zt}}\dd t\\
=&\left[-2\log\left(1+\sqrt{1-4zt}\right)\right]_{t=0}^1\\
=&2\left(\log2-\log\left(1+\sqrt{1-4z}\right)\right)\\
\end{align*}
より,$\displaystyle\sum_{n=1}^\infty\frac{\binom{2n}{n}}{n}z^n=2\left(\log2-\log\left(1+\sqrt{1-4z}\right)\right)$です.