部分積分により
$$
\int_{a}^{x} t^{\alpha}\log{t}\,\d{t} = \left[\frac{1}{\alpha+1}t^{\alpha+1}\log{t}\right]_{a}^{x} - \frac{1}{\alpha+1} \int_{a}^{x} t^{\alpha} \,\d{t}$$
となる.$x \to +\infty$のとき$t^{\alpha} = o(t^{\alpha}\log{t})$であって
$$
\int_{a}^{+\infty} t^{\alpha}\log{t} \,\d{t} = \lim_{x\to+\infty}\frac{x^{\alpha+1}}{\alpha+1}\left(\log{x}-\frac{1}{\alpha+1}\right) + \text{const.} = +\infty$$
である.よって$\int_{a}^{x} t^{\alpha}\log{t}\,\d{t}$は無限大であって
$$
\int_{a}^{x} t^{\alpha} \,\d{t} = o\left(\int_{a}^{x} t^{\alpha}\log{t} \,\d{t} \right) \quad(x \to +\infty)$$
が成り立つので,
$$
\int_{a}^{x} t^{\alpha}\log{t} \,\d{t} - \frac{x^{\alpha+1}}{\alpha+1}\log{x} = o\left(\int_{a}^{x} t^{\alpha}\log{t} \,\d{t} \right) \quad(x\to+\infty) \quad\leadsto\quad \int_{a}^{x} t^{\alpha}\log{t} \,\d{t} \sim \frac{x^{\alpha+1}}{\alpha+1} \log{x}$$
を得る.
部分積分により
$$
\int_{a}^{x} t(\log{t})^{\alpha} \,\d{t} = \left[\frac{t^{2}}{2}(\log{t})^{\alpha}\right]_{a}^{x} - \frac{\alpha}{2} \int_{a}^{x} t(\log{t})^{\alpha-1} \,\d{t}$$
となる.$x\to+\infty$のとき$t(\log{t})^{\alpha-1} = o(t(\log{t})^{\alpha})$である.また,$t > \max\{1,e^{\frac{\alpha}{2}}\} \eqqcolon a'$のとき
$$
\frac{1}{t} < t(\log{t})^{\alpha}$$
となるので,
$$
+\infty = \int_{a'}^{+\infty} \frac{1}{t} \,\d{t} \leq \int_{a'}^{\infty} t(\log{t})^{\alpha} \,\d{t}$$
である.よって$\int_{a}^{x} t(\log{t})^{\alpha} \,\d{t}$は無限大であって
$$
\int_{a}^{x} t(\log{t})^{\alpha-1} \,\d{t} = o\left(\int_{a}^{x} t(\log{t})^{\alpha} \,\d{t} \right) \quad(x\to+\infty)$$
が成り立つので,
$$
\int_{a}^{x} t(\log{t})^{\alpha} \,\d{t} - \frac{x^{2}}{2}(\log{x})^{\alpha} = o\left(\int_{a}^{x} t(\log{t})^{\alpha} \,\d{t}\right)\quad(x\to+\infty) \quad\leadsto\quad \int_{a}^{x} t(\log{t})^{\alpha} \,\d{t} \sim \frac{x^{2}}{2}(\log{x})^{\alpha}$$
を得る.
$$
\sin^{2}x = \frac{1}{2}(1-\cos{2x}) = x^{2}-\frac{x^{4}}{3}+o(x^{4})$$
より
$$
\frac{1}{\sin^{2}x} = \frac{1}{x^{2}\left(1-\frac{x^{2}}{3}+o(x^{2})\right)} = \frac{1}{x^{2}}\left(1+\frac{x^{2}}{3} +o(x^{2})\right) = \frac{1}{x^{2}}+\frac{1}{3}+o(1)$$
となるので,
$$
\lim_{x\to 0} \left(\frac{1}{x^{2}} - \frac{1}{\sin^{2}x}\right) = \lim_{x\to 0} \left(-\frac{1}{3} + o(1)\right) = -\frac{1}{3}$$
となる.
$$ \frac{x-\sin{x}}{x(1-\cos{x})} = \frac{\frac{x^{3}}{6}+o(x^{3})}{\frac{x^{3}}{2}+o(x^{3})} = \frac{\frac{1}{6}+o(1)}{\frac{1}{2}+o(1)} \to \frac{1}{3}.$$
$$
\cot{x} = \frac{\cos{x}}{\sin{x}} = \frac{1-\frac{x^{2}}{2}+o(x^{2})}{x-\frac{x^{3}}{6}+o(x^{3})} = \frac{1}{x}\left(1-\frac{x^{2}}{2}+o(x^{2})\right)\left(1+\frac{x^{2}}{6}+o(x^{2})\right) = \frac{1}{x}\left(1-\frac{x^{2}}{3}-\frac{x^{4}}{12}+o(x^{4})\right)$$
より
$$
\lim_{x\to 0} \left(\frac{1}{x}-\cot{x}\right) = \lim_{x\to 0} \left(\frac{x}{3}+\frac{x^{3}}{12}+o(x^{3})\right) = 0$$
となる.
$\sin{x}=x+o(x^{2}) = x(1+o(x))$より
$$
x\log\sin{x} = x(\log{x}+\log(1+o(x))) = x\log{x}+x\log(1+o(x)) = x\log{x}+o(x\log{x}) \eqqcolon u$$
となるので,
\begin{align}
(\sin{x})^{x}
&= \exp(u) \\
&= 1 + u + \frac{u^{2}}{2} + o(u^{2}) \\
&= 1+x\log{x}+\frac{1}{2}(x\log{x})^{2} + o((x\log{x})^{2}) \quad(x\to +0)
\end{align}
を得る.
$$
\log(1+x^{-\frac{1}{2}}) = x^{-\frac{1}{2}}-\frac{1}{2}x^{-1} + \frac{1}{3}x^{-\frac{3}{2}} + o(x^{-\frac{3}{2}}) = x^{-\frac{1}{2}}\left(1-\frac{1}{2}x^{-\frac{1}{2}}+\frac{1}{3}x^{-1}+o(x^{-1})\right)$$
であるから,
$$
u \coloneqq -\frac{1}{2}x^{-\frac{1}{2}}+\frac{1}{3}x^{-1}+o(x^{-1})$$
とおけば,
\begin{align}
\sqrt{\log\left(1+\frac{1}{\sqrt{x}}\right)}
&= x^{-\frac{1}{4}}(1+u)^{\frac{1}{2}} \\
&= x^{-\frac{1}{4}}\left(1+\frac{1}{2}u-\frac{1}{8}u^{2}+o(u^{2})\right) \\
&= x^{-\frac{1}{4}}\left(1-\frac{1}{4}x^{-\frac{1}{2}} + \left(\frac{1}{6}-\frac{1}{32}\right)x^{-1}+o(x^{-1})\right) \\
&= x^{-\frac{1}{4}} - \frac{1}{4}x^{-\frac{3}{4}} + \frac{13}{96}x^{-\frac{5}{4}}+o(x^{-\frac{5}{4}}) \quad(x\to+\infty)
\end{align}
を得る.
$$ \log(x-1) = \log{x} + \log(1-x^{-1}) = \log{x} + (-x^{-1}+o(x^{-1})) = \log{x} - \frac{1}{x} + o\left(\frac{1}{x}\right) \quad(x\to+\infty).$$
$$
\log(x+1) = \log{x}+\log(1+x^{-1}) = \log{x}+\left(\frac{1}{x}-\frac{1}{2x^{2}}+o\left(\frac{1}{x^{2}}\right)\right) = \log{x}\left(1+\frac{1}{x\log{x}}-\frac{1}{2x^{2}\log{x}}+o\left(\frac{1}{x^{2}\log{x}}\right)\right)$$
であるから,
$$
u \coloneqq \frac{1}{x\log{x}}-\frac{1}{2x^{2}\log{x}}+o\left(\frac{1}{x^{2}\log{x}}\right)$$
とおけば,
\begin{align}
\sqrt{\log(x+1)}
&= \sqrt{\log{x}}(1+u)^{\frac{1}{2}}\\
&= \sqrt{\log{x}}\left(1+\frac{1}{2}u-\frac{1}{8}u^{2}+o(u^{2})\right) \\
&= \sqrt{\log{x}}\left(1+\frac{1}{2x\log{x}}-\frac{1}{4x^{2}\log{x}}-\frac{1}{8(x\log{x})^{2}}+o\left(\frac{1}{(x\log{x})^{2}}\right)\right)\\
&= \sqrt{\log{x}} + \frac{1}{2x\sqrt{\log{x}}}-\frac{1}{4x^{2}\sqrt{\log{x}}} - \frac{1}{8x^{2}\log{x}\sqrt{\log{x}}} +o\left(\frac{1}{x^{2}\log{x}\sqrt{\log{x}}}\right) \\
&= \sqrt{\log{x}} + \frac{1}{2x\sqrt{\log{x}}}-\frac{1}{4x^{2}\sqrt{\log{x}}} +o\left(\frac{1}{x^{2}\sqrt{\log{x}}}\right) \quad(x\to+\infty)
\end{align}
を得る.
$$ \frac{1}{\log{n}} \geq \frac{1}{n},\ n \geq 2 \quad\leadsto\quad \sum \frac{1}{\log{n}} \geq \sum \frac{1}{n}=+\infty.$$
$$ n^{-\frac{a}{n}} \geq n^{-1},\ n \geq a \quad\leadsto\quad \sum n^{-\frac{a}{n}} \geq \sum n^{-1} = +\infty.$$
$$ a_{n} \coloneqq \frac{\sqrt{n}}{1+n^{2}} \sim \frac{1}{n^{\frac{3}{2}}} \quad(n\to\infty).$$
$$ \frac{1}{n^{\log{n}}} \leq \frac{1}{n^{2}},\ n \geq e^{2}.$$
$$ \sqrt[n]{\frac{1}{(\log{n})^{n}}} = \frac{1}{\log{n}} \to 0<1 \quad(n\to\infty).$$
$$ a^{\log{n}} = \exp(\log{n}\log{a}) = n^{\log{a}} = \frac{1}{n^{-\log{a}}}.$$
$$ \frac{1}{(\log{n})^{\log{n}}} = \exp(-\log{n}\log{n}) \leq \exp(-2\log{n}) = \frac{1}{n^{2}},\ n \geq e^{2}.$$
$$ \frac{(n!)^{2}}{(2n)!} \cdot \frac{(2(n-1))!}{((n-1)!)^{2}} = \frac{n^{2}}{2n(2n-1)} \to \frac{1}{4} < 1 \quad(n\to\infty).$$
$a=1$のときは明らかに収束する.$a\neq 1$のとき,$a=1\pm h,\,h>0,\,$とおくと
$$
a^{\frac{1}{n}}-1 = \pm\frac{h}{n} + o\left(\frac{1}{n}\right) \sim \pm\frac{h}{n} \quad(n\to\infty)$$
となるので,$\sum (a^{\frac{1}{n}}-1)$は発散する.
$$
n\log \left(1-\frac{1}{n}\log{n}\right) = n \left(-\frac{\log{n}}{n} + o\left(\frac{1}{n}\right)\right) = -\log{n} +o(1) \quad(n\to\infty)$$
より
$$
\left(1-\frac{1}{n}\log{n}\right)^{n} = \frac{1}{n}e^{o(1)} \sim \frac{1}{n} \quad(n\to\infty)$$
となるので,$\sum (1-(\log{n})/n)^{n}$は発散する.
$$
n^{\frac{1}{n}} = \exp \left(\frac{\log{n}}{n}\right) = 1 + \frac{\log{n}}{n} + o\left(\frac{\log{n}}{n}\right) \quad(n\to\infty)$$
より
$$
\frac{1}{n^{p}(n^{\frac{1}{n}}-1)} = \frac{1}{n^{p-1}\log{n}}(1+o(1))^{-1} \sim \frac{1}{n^{p-1}\log{n}} \quad(n\to\infty)$$
であり,
$$
\sum \frac{1}{n^{p-1}\log{n}}\ \begin{dcases}
\leq \sum \frac{1}{n^{p-1}} < +\infty & p-1 > 1 \\
\geq \sum \frac{1}{n\log{n}} = +\infty & p-1 \leq 1
\end{dcases}$$
であるから,$\sum (n^{p}(n^{1/n}-1))^{-1}$は$p>2$のとき収束し$p\leq 2$のとき発散する.
\begin{align}
n^{2}\log\frac{n}{n+1} = n^{2}\log \left(1-\frac{1}{n+1}\right)
&= n^{2}\left(-\frac{1}{n+1}-\frac{1}{2(n+1)^{2}} + o\left(\frac{1}{(n+1)^{2}}\right)\right) \\
&= n \frac{-n}{n+1} - \frac{1}{2}\left(\frac{n}{n+1}\right)^{2} + o(1) \\
&= n\left(-1+\frac{1}{n+1}\right) - \frac{1}{2}\left(1-\frac{1}{n+1}\right)^{2} + o(1) \\
&= -n + \left(1-\frac{1}{n+1}\right) -\frac{1}{2}\left(1-\frac{1}{n+1}\right)^{2} + o(1) \\
&= -n + \frac{1}{2}-\frac{1}{2}\frac{1}{(n+1)^{2}} + o(1) \\
&= -n +\frac{1}{2} +o(1) \quad(n\to\infty)
\end{align}
より
$$
\left(\frac{n}{n+1}\right)^{n^{2}} \sim \sqrt{e}\cdot e^{-n} \quad(n\to\infty)$$
となるので,$\sum (n/(n+1))^{n^{2}}$は収束する.
$$ \frac{n^{q}}{(n+1)^{p+q}} = \left(\frac{n}{n+1}\right)^{q} \frac{1}{(n+1)^{p}} \sim \frac{1}{n^{p}} \quad(n\to\infty).$$
$$ \frac{a^{n}}{n!}n^{\frac{n}{2}} \cdot \frac{(n-1)!}{a^{n-1}}\frac{1}{(n-1)^{\frac{n-1}{2}}} = \frac{a}{n}\left(\frac{n}{n-1}\right)^{\frac{n}{2}}\sqrt{n-1} = a\left(1-\frac{1}{n}\right)^{-\frac{n}{2}}\frac{\sqrt{n-1}}{n} \sim a \frac{e^{\frac{1}{2}}}{\sqrt{n}} \to 0 \quad(n\to\infty).$$
$$ \frac{1}{n\left(1+\frac{1}{2} +\cdots+ \frac{1}{n}\right)} \sim \frac{1}{n\log{n}} \quad(n\to\infty).$$
(xii)での計算より
$$
a_{n} \coloneqq \left(\frac{n}{n+1}\right)^{n^{2}}e^{n} \sim \sqrt{e} \not\to 0 \quad(n\to\infty)$$
となるので,$\sum a_{n}$は発散する.
$$
\left(\frac{(2n-1)!!}{(2n)!!}\right)^{p} \cdot \left(\frac{(2(n-1))!!}{(2(n-1)-1)!!}\right)^{p} = \left(\frac{2n-1}{2n}\right)^{p} = \left(1-\frac{1}{2n}\right)^{p} = 1-\frac{\frac{p}{2}}{n} + O\left(\frac{1}{n^{2}}\right) \quad(n\to\infty)$$
となるので,ガウスの判定法により,$\sum ((2n-1)!!/(2n)!!)^{p}$は$p>2$のとき収束し$p \leq 2$のとき発散する.
$$ \frac{(n!)^{2}}{\prod_{k=1}^{n}(k^{2}+k+3)} \cdot \frac{\prod_{k=1}^{n-1} (k^{2}+k+3)}{((n-1)!)^{2}} = \frac{n^{2}}{n^{2}+n+3} = \frac{1}{1+\frac{1}{n}+\frac{3}{n^{2}}} = 1-\frac{1}{n}+O\left(\frac{1}{n^{2}}\right) \quad(n\to\infty).$$
$$
\frac{\log(n^{2}+1)}{n} = 2\frac{\log{n}}{n} + \frac{1}{n}\log\left(1+\frac{1}{n^{2}}\right) = 2 \frac{\log{n}}{n} + \frac{1}{n}\left(\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)\right) = 2\frac{\log{n}}{n} + o\left(\frac{\log{n}}{n} \right) \quad(n\to\infty)$$
となるので,$\prod \sqrt[n]{n^{2}+1}$は発散する(cf. 命題3.34).
$$ \log{a^{\frac{1}{n^{p}}}} = \frac{\log{a}}{n^{p}}.$$
$p>1$のとき,$p>p'>1$を取ると
$$
\frac{\log{n}}{n^{p}} \leq \frac{1}{(p-p')n^{p'}} \quad\leadsto\quad \sum \frac{\log{n}}{n^{p}} < +\infty$$
となるので,$\prod n^{\frac{1}{n^{p}}}$は収束する.$p \leq 1$のとき,
$$
\frac{\log{n}}{n^{p}} \geq \frac{1}{n^{p}},\ n \geq e \quad\leadsto\quad \sum \frac{\log{n}}{n^{p}} = +\infty$$
となるので,$\prod n^{\frac{1}{n^{p}}}$は発散する.
$$
\frac{2(1+2n+3n^{2})}{4+5n+6n^{2}} = 1-\frac{2+n}{4+5n+6n^{2}}$$
であり
$$
\frac{2+n}{4+5n+6n^{2}} \sim \frac{1}{6n} \quad(n\to\infty)$$
より$\sum (2+n)/(4+5n+6n^{2})$は発散するので,$\prod 2(1+2n+3n^{2})/(4+5n+6n^{2})$も発散する(cf. 定理3.39).
$$ \frac{n^{2}-\sqrt{n}+3}{n^{2}+1} = 1- \frac{\sqrt{n}-2}{n^{2}+1},\ \frac{\sqrt{n}-2}{n^{2}+1} \sim \frac{1}{n^{\frac{3}{2}}} \quad(n\to\infty).$$
$$
\frac{5n^{3}+(-1)n^{2}+1}{5n^{3}+2} = 1 + \frac{(-1)^{n}n^{2}-1}{5n^{3}+2} \eqqcolon 1 +u_{n}$$
とおくと,
$$
u_{n}^{2} \sim \frac{1}{25n^{2}} \quad(n\to\infty)$$
より$\sum u_{n}^{2}$は収束し,
$$
u_{n} \sim \frac{(-1)^{n}}{5n} \quad(n\to\infty)$$
より$\sum u_{n}$も収束するので,$\prod (1+u_{n})$は収束する(cf. 定理3.36).
$$ \frac{2\sum_{k=1}^{n} k}{n^{2}} = \frac{n(n+1)}{n^{2}} = 1+\frac{1}{n}.$$
$$
\sqrt{n(n+1)} = n\left(1+\frac{1}{n}\right)^{\frac{1}{2}} = n\left(1+\frac{1}{2n} - \frac{1}{8n^{2}} +o\left(\frac{1}{n^{2}}\right)\right) = n+\frac{1}{2}-\frac{1}{8n}+o\left(\frac{1}{n}\right) \quad(n\to\infty)$$
より
$$
2\left(\sqrt{n(n+1)}-n\right) = 1-\frac{1}{4n}+o\left(\frac{1}{n}\right) \quad(n\to\infty)$$
となるので,$\prod 2(\sqrt{n(n+1)}-n)$は発散する.
$$ n\sin\frac{1}{n} = n\left(\frac{1}{n}-\frac{1}{6n^{3}} +o\left(\frac{1}{n^{3}}\right)\right) = 1 -\frac{1}{6n^{2}} +o\left(\frac{1}{n^{2}}\right) \quad(n\to\infty).$$
$$
\tan\frac{1}{n} = \frac{\frac{1}{n}-\frac{1}{6n^{3}}+o\left(\frac{1}{n^{3}}\right)}{1-\frac{1}{2n^{2}}+o\left(\frac{1}{n^{2}}\right)} = \left(\frac{1}{n}-\frac{1}{6n^{3}}+o\left(\frac{1}{n^{3}}\right)\right) \left(1+\frac{1}{2n^{2}}+o\left(\frac{1}{n^{2}}\right)\right) = \frac{1}{n} +\frac{1}{3n^{3}} + o\left(\frac{1}{n^{3}}\right) \quad(n\to\infty)$$
より
$$
n\tan\frac{1}{n} = 1+\frac{1}{3n^{2}} +o\left(\frac{1}{n^{2}}\right) \quad(n\to\infty)$$
となるので,$\prod n\tan{\frac{1}{n}}$は収束する.
$$ \log\frac{x-a}{x+a} = \log \left(1-\frac{2a}{x+a}\right) = -\frac{2a}{x+a} + o\left(\frac{1}{x+a}\right) \quad(x\to+\infty).$$
$$ \cos{x} = 1-\frac{x^{2}}{2} +o(x^{2}) \quad(x\to 0) \quad\leadsto\quad \log\cos{x} = -\frac{x^{2}}{2}+o(x^{2}) \quad(x \to 0).$$
$$ e^{\frac{1}{x}}-1 = \frac{1}{x} +o\left(\frac{1}{x}\right) \quad(x\to+\infty).$$
$$ \cos{x}=1-\frac{x^{2}}{2}+o(x^{2}) \quad(x\to 0) \quad\leadsto\quad \cos(1-\cos{x}) = 1-\frac{1}{8}x^{4} +o(x^{4}) \quad(x\to 0).$$
$$ \frac{\frac{1}{(x+2)^{2}+(x+1)^{2}}}{-\frac{1}{x^{2}}} = -\frac{x^{2}}{2x^{2}+6x+5} \to -\frac{1}{2} \quad(x\to+\infty) \quad\leadsto\quad \lim_{x\to+\infty} x\left(\arctan\frac{x+1}{x+2}-\frac{\pi}{4}\right) = \lim_{x\to+\infty} \frac{\arctan\frac{x+1}{x+2}-\frac{\pi}{4}}{\frac{1}{x}} = -\frac{1}{2}.$$
$$
\frac{\sin{x}}{x} = 1-\frac{x^{2}}{6} +o(x^{2}) \quad(x\to 0) \quad\leadsto\quad \log\frac{\sin{x}}{x} = -\frac{x^{2}}{6}+o(x^{2}) \quad(x\to 0)$$
より
$$
\frac{\sin{x}}{x-\sin{x}}\log\frac{\sin{x}}{x} = \frac{-\frac{x^{3}}{6}+o(x^{3})}{\frac{x^{3}}{6}+o(x^{3})} \to -1 \quad(x\to 0)$$
となるので,
$$
\lim_{x\to 0} \left(\frac{\sin{x}}{x}\right)^{\frac{\sin{x}}{x-\sin{x}}} = e^{-1}$$
を得る.
$$
0 < e^{-t^{2}} \to 0 \quad(t\to+\infty),\ \int_{0}^{+\infty} e^{-t^{2}} \,\d{t} = \frac{\sqrt{\pi}}{2}$$
より$\int_{x}^{+\infty} e^{-t^{2}}\,\d{t}$は$x\to+\infty$のとき無限小である.いま,部分積分により
$$
\int_{x}^{+\infty} e^{-t^{2}}\,\d{t} = \left[\frac{1}{-2t}e^{-t^{2}}\right]_{x}^{+\infty} - \frac{1}{2}\int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}} \,\d{t} = \frac{e^{-x^{2}}}{2x} - \frac{1}{2}\int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}} \,\d{t}$$
であり,
$$
\frac{e^{-t^{2}}}{t^{2}} = o(e^{-t^{2}}) \quad(t\to+\infty) \quad\leadsto\quad \int_{x}^{+\infty} \frac{e^{-t^{2}}}{t^{2}}\,\d{t} = o\left(\int_{x}^{+\infty} e^{-t^{2}} \,\d{t}\right)$$
であるから(cf. 定理3.7),
$$
\int_{x}^{+\infty} e^{-t^{2}} \,\d{t} \sim \frac{e^{-x^{2}}}{2x} \quad(x\to+\infty)$$
が成り立つ.
$$
\log(1+t^{2}) = 2\log{t} + \log\left(1+\frac{1}{t^{2}}\right)$$
より
$$
\int_{0}^{x} \log(1+t^{2}) \,\d{t} = 2[t\log{t}-t]_{0}^{x} +\int_{0}^{x} \log \left(1+\frac{1}{t^{2}}\right) \,\d{t} = 2x\log{x} - 2x + \int_{0}^{x} \log \left(1+\frac{1}{t^{2}} \right) \,\d{t}$$
となる.ところで,
$$
\log \left(1+ \frac{1}{t^{2}} \right) = o(1) \quad(t\to+\infty)$$
より
$$
\int_{0}^{x} \log \left(1+\frac{1}{t^{2}} \right) \,\d{t} = o\left(\int_{0}^{x} 1 \,\d{t} \right) = o(x) \quad(x\to+\infty)$$
であるから(cf. 定理3.7),
$$
\int_{0}^{x} \log(1+t^{2})\,\d{t} = 2x\log{x} - 2x + o(x) \quad(x\to+\infty)$$
が成り立つ.
\begin{align}
\tan{x} = \frac{\sin{x}}{\cos{x}}
&= \frac{x-\dfrac{x^{3}}{6}+\dfrac{x^{5}}{120} + o(x^{5})}{1-\dfrac{x^{2}}{2} + \dfrac{x^{4}}{24} + o(x^{4})} \\
&= x \frac{1-\dfrac{x^{2}}{6}+\dfrac{x^{4}}{120} + o(x^{4})}{1-\dfrac{x^{2}}{2} + \dfrac{x^{4}}{24} + o(x^{4})} \\
&= x \left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120} + o(x^{4})\right)\left(1+\frac{x^{2}}{2} +\left(\frac{1}{4}-\frac{1}{24}\right)x^{4} +o(x^{4})\right) \\
&= x \left(1 + \frac{x^{2}}{3} + \left(\frac{5}{24}+\frac{1}{120}-\frac{1}{12}\right) x^{4} +o(x^{4})\right) \\
&= x + \frac{1}{3}x^{3} +\frac{2}{15}x^{5} +o(x^{5}) \quad(x\to 0) \\
&\eqqcolon u
\end{align}
より
\begin{align}
\log(1+\tan{x}) = \log(1+u)
&= u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\frac{u^{4}}{4} +O(u^{5}) \\
&= x-\frac{1}{2}x^{2} + \left(\frac{1}{3}+\frac{1}{3}\right)x^{3} + \left(-\frac{1}{2}\frac{2}{3} - \frac{1}{4}\right)x^{4} +O(x^{5}) \\
&= x-\frac{1}{2}x^{2} + \frac{2}{3}x^{3} - \frac{7}{12}x^{4} +O(x^{5}) \quad(x\to 0)
\end{align}
を得る.
$$
\cos{x} = 1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O(x^{8}) \eqqcolon 1+u \quad(x\to 0)$$
より
\begin{align}
\log\cos{x} = \log(1+u)
&= u-\frac{u^{2}}{2}+\frac{u^{3}}{3}+O(u^{4}) \\
&= -\frac{1}{2}x^{2}+\left(\frac{1}{24}-\frac{1}{2}\frac{1}{4}\right)x^{4}+\left(-\frac{1}{720}-\frac{1}{2}\left(-\frac{1}{24}\right)+\frac{1}{3}\left(-\frac{1}{8}\right)\right)x^{6} +O(x^{8}) \\
&= -\frac{1}{2}x^{2}-\frac{1}{12}x^{4}-\frac{1}{45}x^{6}+O(x^{8}) \quad(x\to 0)
\end{align}
を得る.
$$
x\sin{x} = x^{2}-\frac{x^{4}}{6} + \frac{x^{6}}{120} + O(x^{8}) \eqqcolon u \quad(x\to 0)$$
より
\begin{align}
e^{x\sin{x}}
&= 1+u+\frac{u^{2}}{2} + \frac{u^{3}}{6} +O(u^{4}) \\
&= 1+x^{2}+\left(-\frac{1}{6}+\frac{1}{2}\right)x^{4} + \left(\frac{1}{120}+\frac{1}{2}\left(-\frac{1}{3}\right)+\frac{1}{6}\right)x^{6} +O(x^{8}) \\
&= 1+x^{2}+\frac{1}{3}x^{4}+\frac{1}{120}x^{6}+O(x^{8}) \quad(x\to 0)
\end{align}
を得る.
$$
\frac{\sin{x}}{x} = 1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{7!} +O(x^{8}) \eqqcolon 1-u \quad(x\to 0)$$
より
\begin{align}
\frac{x}{\sin{x}} = (1-u)^{-1}
&= 1+u+u^{2}+u^{3}+O(u^{4}) \\
&= 1+\frac{1}{6}x^{2}+\left(-\frac{1}{120}+\frac{1}{36}\right)x^{4}+\left(\frac{1}{7!}-\frac{1}{360}+\frac{1}{6^{3}}\right)x^{6} +O(x^{8})\\
&= 1+\frac{1}{6}x^{2} + \frac{7}{320}x^{4}+\left(\frac{1}{7!}-\frac{1}{360}+\frac{1}{6^{3}}\right)x^{6} +O(x^{8}) \quad(x\to 0) \\
&\eqqcolon 1+v
\end{align}
となるので,
\begin{align}
\log\frac{x}{\sin{x}} = \log(1+v)
&= v-\frac{v^{2}}{2}+\frac{v^{3}}{3} +O(v^{4}) \\
&= \frac{1}{6}x^{2} +\left(\frac{7}{320}-\frac{1}{2}\frac{1}{36}\right)x^{4} + \left(\left(\frac{1}{7!}-\frac{1}{360}+\frac{1}{6^{3}}\right)-\frac{1}{2}\frac{7}{3\cdot 360} + \frac{1}{3}\frac{1}{6^{3}}\right)x^{6} +O(x^{8}) \\
&= \frac{1}{6}x^{2} + \frac{1}{180}x^{4} + \frac{1}{2835}x^{6} +O(x^{8}) \quad(x\to 0)
\end{align}
が成り立つ.
$a,b \in \mathbb{R},\,a< b,\,$とし,$\varphi,\psi \colon [a,b] \to \mathbb{R}$を連続函数とする.このとき,$\psi \geq 0$ならば,$\xi \in\,]a,b[$であって
$$
\int_{a}^{b} \varphi(t)\psi(t)\,\d{t} = \varphi(\xi)\int_{a}^{b} \psi(t)\,\d{t}$$
を満たすものが存在する.
$\psi\neq 0$としてよい.このとき,命題2.17より
$$
\Psi \coloneqq \int_{a}^{b} \psi(t)\,\d{t} > 0$$
となる.ここで
$$
m \coloneqq \inf_{t\in[a,b]} \varphi(t),\ M \coloneqq \sup_{t\in[a,b]} \varphi(t)$$
とおくと,
$$
m\Psi = \int_{a}^{b} m\psi(t) \,\d{t} \leq \int_{a}^{b} \varphi(t)\psi(t) \,\d{t} \leq \int_{a}^{b} M\psi(t) \,\d{t} = M\Psi$$
が成り立つ.右側の不等号が等号になるとき,$\varphi\psi = M\psi$であるから,内点$t_{0}\in\,]a,b[$であって$\psi(t_{0})>0$なるものを取れば,$\xi \coloneqq t_{0}\in\,]a,b[$に対して
$$
\int_{a}^{b} \varphi(t)\psi(t) \,\d{t} = M\Psi = \varphi(\xi)\int_{a}^{b} \psi(t)\,\d{t}$$
が成り立つ.左側の不等号が等号になるときも同様である.よって,あとは
$$
m\Psi < \int_{a}^{b} \varphi(t)\psi(t) \,\d{t} < M\Psi \quad\leadsto\quad m < \frac{\int_{a}^{b} \varphi(t)\psi(t) \,\d{t}}{\Psi} < M$$
なる場合を考えればよい.このとき,$t_{m},t_{M} \in [a,b]$であって
$$
\varphi(t_{m})=m,\ \varphi(t_{M})=M$$
なるものを取り
$$
a' \coloneqq \min\{t_{m},t_{M}\} < b' \coloneqq \max\{t_{m},t_{M}\}$$
とおけば,$\varphi|[a',b']$に対する中間値の定理より,$\xi\in\,]a',b'[\,\subset\,]a,b[$であって
$$
\varphi(\xi) = \frac{1}{\Psi}\int_{a}^{b} \varphi(t)\psi(t) \,\d{t} \quad\leadsto\quad \int_{a}^{b} \varphi(t)\psi(t)\,\d{t} = \varphi(\xi)\int_{a}^{b} \psi(t)\,\d{t}$$
なるものが存在する.
さて,積分型の剰余項
$$
R_{n}(x) = \int_{x_{0}}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) \,\d{t} = \frac{1}{(n-1)!} \int_{x_{0}}^{x} f^{(n)}(t)(x-t)^{n-1} \,\d{t}$$
において,
(cf. d-ic, Prob.III.10.)
$$
\frac{1}{k+1} < x \leq \frac{1}{k} \iff k \leq \frac{1}{x} < k+1 \iff k = \left\lfloor \frac{1}{x} \right\rfloor$$
であるから,
\begin{align}
a_{n+1} \coloneqq \int_{\frac{1}{n+1}}^{1} \left(\frac{1}{x}-\left\lfloor \frac{1}{x} \right\rfloor\right)\,\d{x}
&= \sum_{k=1}^{n} \int_{\frac{1}{k+1}}^{\frac{1}{k}} \left(\frac{1}{x}-\left\lfloor \frac{1}{x} \right\rfloor\right)\,\d{x} \\
&= \sum_{k=1}^{n} \left(\int_{\frac{1}{k+1}}^{\frac{1}{k}} \frac{1}{x}\,\d{x} - \int_{\frac{1}{k+1}}^{\frac{1}{k}} k\,\d{x}\right) \\
&= \sum_{k=1}^{n} \left(\log(k+1)-\log{k}-k\left(\frac{1}{k}-\frac{1}{k+1}\right)\right) \\
&= \sum_{k=1}^{n} \left(\log(k+1)-\log{k}-\frac{1}{k+1}\right) \\
&= \log(n+1)-\sum_{k=1}^{n} \frac{1}{k+1} \\
&= 1 - \left(\sum_{k=1}^{n+1} \frac{1}{k} -\log(n+1)\right)\\
&\to 1 - \gamma \quad(n\to\infty)
\end{align}
となる.よって,任意の$\varepsilon\in\,]0,1]$に対して$n \coloneqq \lfloor \varepsilon^{-1} \rfloor \in\mathbb{N}$とおけば
$$
\frac{1}{n+1} < \varepsilon \leq \frac{1}{n} \quad\leadsto\quad a_{n} \leq \int_{\varepsilon}^{1} \left(\frac{1}{x}-\left\lfloor \frac{1}{x} \right\rfloor\right)\,\d{x} \leq a_{n+1}$$
が成り立つことと合わせて,
$$
\int_{0}^{1} \left(\frac{1}{x}-\left\lfloor \frac{1}{x} \right\rfloor\right)\,\d{x} = \lim_{\varepsilon\downarrow 0} \int_{\varepsilon}^{1} \left(\frac{1}{x}-\left\lfloor \frac{1}{x} \right\rfloor\right)\,\d{x} = \lim_{n\to\infty} a_{n} = 1-\gamma$$
を得る.
\begin{align}
\int_{k}^{k+1} \log{x}\,\d{x}
&= [x\log{x}-x]_{k}^{k+1} \\
&= (k+1)\left(\log{k}+\log \left(1+\frac{1}{k}\right)\right)-k\log{k}-1 \\
&= \log{k} + (k+1)\log \left(1+\frac{1}{k}\right)-1 \\
&= \log{k} + (k+1)\left(\frac{1}{k}+o\left(\frac{1}{k}\right)\right)-1 \\
&= \log{k} + \frac{1}{k} + o(1) \\
&\sim \log{k} \quad(k\to\infty)
\end{align}
より
$$
\sum_{k=1}^{n} \log{k} \sim \int_{1}^{n+1} \log{x}\,\d{x} = (n+1)\log(n+1)-n \sim n\log{n} \quad(n\to\infty)$$
となる.
$$
\int_{k}^{k+1} (\log{x})^{p}\,\d{x} = (k+1)(\log(k+1))^{p}-k(\log{k})^{p}-p\int_{k}^{k+1} (\log{x})^{p-1}\,\d{x}$$
および
\begin{align}
(k+1)(\log(k+1))^{p}
&= (k+1)(\log{k})^{p} \left(1+\frac{1}{\log{k}}\log\left(1+\frac{1}{k}\right)\right)^{p} \\
&= (k+1)(\log{k})^{p} \left(1+ \underbrace{\frac{1}{k\log{k}} + o\left(\frac{1}{k\log{k}}\right)}_{\eqqcolon u}\right)^{p} \\
&= (k+1)(\log{k})^{p}(1+pu+ o(u)) \\
&= k(\log{k})^{p}+(\log{k})^{p} + p(\log{k})^{p-1}\left(1+\frac{1}{k}\right) + o((\log{k})^{p-1}) \quad(k\to \infty)
\end{align}
より
$$
\int_{k}^{k+1} (\log{x})^{p}\,\d{x} \sim (\log{k})^{p} \quad(k\to\infty)$$
となるので,
$$
\sum_{k=1}^{n} (\log{k})^{p} \sim \int_{1}^{n+1} (\log{x})^{p}\,\d{x} = (n+1)(\log(n+1))^{p} - p\int_{1}^{n+1} (\log{x})^{p-1}\,\d{x} \sim n(\log{n})^{p} \quad(n\to\infty)$$
を得る.
$$
\int_{k}^{k+1} \frac{(\log{x})^{p}}{x}\,\d{x} = \frac{1}{p+1}((\log(k+1))^{p+1}-(\log{k})^{p+1}) = \frac{1}{p+1}((\log{k})^{p+1}(1+pu+o(u)) - (\log{k})^{p+1}) = \frac{(\log{k})^{p}}{k}+o\left(\frac{(\log{k})^{p}}{k}\right) \sim \frac{(\log{k})^{p}}{k} \quad(k\to\infty)$$
より
$$
\sum_{k=1}^{n} \frac{(\log{k})^{p}}{k} \sim \int_{1}^{n+1} \frac{(\log{x})^{p}}{x} \,\d{x} = \frac{(\log(n+1))^{p+1}}{p+1} \sim \frac{(\log{n})^{p+1}}{p+1} \quad(n\to\infty)$$
を得る.
2(i)と同様にして$f(x)$が$x\to+\infty$のとき無限小であることがわかる.
$f \colon I \to \mathbb{R}$を可微分函数とし,$x_{0}\in I,\,c \geq 0,\,\lambda > 0$が以下の条件を満たすとする:
$$
|f(x_{0})| \leq \frac{c}{2\lambda};\ \forall\,x,y \in [x_{0}-c,x_{0}+c] \subset I,\ |f'(x)| \geq \frac{1}{\lambda},\ |f'(x)-f'(y)| \leq \frac{1}{2\lambda}.$$
このとき次が成り立つ:
上の$f$が$|f''(x)| \leq \mu$をも満たすとする.このとき,$z_{n} \coloneqq x_{n}$としてnewtonを適用すると,$x_{n+1}$の定義とテイラーの公式より
$$
-f'(x_{n})(x_{\infty}-x_{n+1}) = f(x_{\infty})-f(x_{n})-f'(x_{n})(x_{\infty}-x_{n}) = \frac{f''(\prescript{\exists}{}\xi)}{2}(x_{\infty}-x_{n})^{2}$$
となるので,
$$
|x_{\infty}-x_{n+1}| \leq \frac{|f''(\xi)|}{2|f'(x_{n})|}|x_{\infty}-x_{n}|^{2} \leq \frac{\lambda\mu}{2}|x_{\infty}-x_{n}|^{2}$$
を得る.そこで$q \coloneqq \lambda\mu/2$とおくと,
$$
|x_{\infty}-x_{n}| \leq \frac{1}{q}(cq)^{2^{n}}$$
が成り立つ:実際,$x_{\infty}\in[x_{0}-c,x_{0}+c]$より
$$
|x_{\infty}-x_{1}| \leq qc^{2} = \frac{1}{q}(cq)^{2}$$
であり,上述の不等式により
$$
|x_{\infty}-x_{n}| \leq \frac{1}{q}(cq)^{2^{n}} \implies |x_{\infty}-x_{n+1}| \leq q|x_{\infty}-x_{n}|^{2} \leq \frac{1}{q}(cq)^{2^{n+1}}$$
が成り立つ.
$f(x)\coloneqq x^{2}-7$とおくと,$f'(x)=2x,\,f''(x)=2$であるから,
$$
x_{0} \coloneqq \frac{5}{2},\ c \coloneqq \frac{1}{2},\ \lambda \coloneqq \frac{1}{4},\ \mu \coloneqq 2 \quad\leadsto\quad q = \frac{1}{4}$$
とおけばnewtonが適用できる.このとき
$$
x_{n+1} = \frac{1}{2}\left(x_{n}+\frac{7}{x_{n}}\right),\ |x_{\infty}-x_{n}| \leq 4\left(\frac{1}{8}\right)^{2^{n}}$$
であり(cf. 第1章演習問題3(iii)),
$$
4\left(\frac{1}{8}\right)^{2^{3}} < \frac{1}{10^{5}} < 4\left(\frac{1}{8}\right)^{2^{2}}$$
であるから,$x_{3}$まで求めればよい:
\begin{align}
x_{1} &= \frac{1}{2}\left(\frac{5}{2}+\frac{14}{5}\right) = \frac{53}{20} = 2.65;\\
x_{2} &= \frac{1}{2}\left(\frac{53}{20}+\frac{140}{53}\right) = \frac{5609}{2120} = 2.645754716\cdots;\\
x_{3} &= \frac{1}{2}\left(\frac{5609}{2120}+\frac{14840}{5609}\right) = \textcolor{red}{2.64575}1311\cdots.
\end{align}
$f(x)\coloneqq x^{3}-25$とおくと,$f'(x)=3x^{2},\,f''(x)=6x$であるから,
$$
x_{0} \coloneqq 3,\ c \coloneqq \frac{1}{6},\ \lambda \coloneqq \frac{1}{24},\ \mu \coloneqq 17 \quad\leadsto\quad q = \frac{17}{48}$$
とおけばnewtonが適用できる.このとき
$$
x_{n+1} = \frac{1}{3}\left(2x_{n}+\frac{25}{x_{n}^{2}}\right),\ |x_{\infty}-x_{n}| \leq \frac{48}{17}\left(\frac{17}{288}\right)^{2^{n}}$$
であり
$$
\frac{48}{17}\left(\frac{17}{288}\right)^{2^{3}} < \frac{1}{10^{5}} < \frac{48}{17}\left(\frac{17}{288}\right)^{2^{2}}$$
であるから,$x_{3}$まで求めればよい:
\begin{align}
x_{1} &= \frac{1}{3}\left(6+\frac{25}{9}\right) = \frac{79}{27} = 2.925925\cdots;\\
x_{2} &= \frac{1}{3}\left(\frac{158}{27}+\frac{18225}{6241}\right) = \frac{1478153}{505521} = 2.924018982\cdots;\\
x_{3} &= \frac{1}{3}\left(\frac{2956306}{505521}+\frac{25\times 505521^{2}}{1478153^{2}}\right) = \textcolor{red}{2.92401}7738\cdots.
\end{align}
\begin{align} x_{1} &= \frac{1}{2}\left(9+\frac{79}{9}\right) = \frac{80}{9} = 8.88888888\cdots;\\ x_{2} &= \frac{1}{2}\left(\frac{80}{9}+\frac{711}{80}\right) = \frac{12799}{1440} = 8.888194444\cdots;\\ x_{3} &= \frac{1}{2}\left(\frac{12799}{1440}+\frac{79 \times 1440}{12799}\right) = \textcolor{red}{8.88819}4417\cdots. \end{align}
\begin{align} \sqrt[3]{2} &= \left(\left(\frac{5}{4}\right)^{3}+2-\left(\frac{5}{4}\right)^{3}\right)^{\frac{1}{3}} \\ &= \frac{5}{4}\left(1+\frac{4^{3}}{5^{3}}\left(2-\frac{5^{3}}{4^{3}}\right)\right)^{\frac{1}{3}} \\ &= \frac{5}{4}\left(1+\frac{3}{125}\right)^{\frac{1}{3}} \\ &= \frac{5}{4}\left(1+\frac{1}{125}-\frac{1}{9}\left(\frac{3}{125}\right)^{2} + \frac{5}{81}\left(\frac{3}{125}\right)^{3} +\cdots \right) \\ &= 1.25 + \frac{5}{4}\left(\frac{1}{125}-\frac{1}{9}\left(\frac{3}{125}\right)^{2} + \frac{5}{81}\left(\frac{3}{125}\right)^{3} +\cdots \right) \\ &= 1.26 + \frac{5}{4}\left(-\frac{1}{9}\left(\frac{3}{125}\right)^{2} + \frac{5}{81}\left(\frac{3}{125}\right)^{3} +\cdots \right) \\ &= 1.25992 + \frac{5}{4}\left(\frac{5}{81}\left(\frac{3}{125}\right)^{3}+\cdots \right) \\ &= \textcolor{red}{1.25992}5333\cdots + \frac{5}{4}\left(\binom{\frac{1}{3}}{4}\left(\frac{3}{125}\right)^{4} + \cdots \right). \end{align}
\begin{align}
\log{2} &= 2\log\frac{3}{2}-\log\frac{9}{8};\\
\log{3} &= 3\log\frac{3}{2}-\log\frac{9}{8};
\end{align}
という仕組.なのだが
$$
\log\frac{x+1}{x} = \log \left(1+\frac{1}{x}\right) = \frac{1}{x}-\frac{1}{2x^{2}}+\frac{1}{3x^{3}}-\frac{1}{4x^{4}}+\cdots $$
は収束が遅くて困っていたところ,以下を見つけた:
$$ \log\frac{x+1}{x} = 2\sum_{n=0}^{\infty} \frac{1}{2n+1}\frac{1}{(2x+1)^{2n+1}},\ x>0.$$
$y>0$とし,$t\coloneqq (y-1)/(y+1)$とおくと,
$$
y=\frac{1+t}{1-t},\ |t|<1$$
であるから,
\begin{align}
\log{y}
&=\log(1+t)-\log(1-t) \\
&= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}t^{n}-\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(-t)^{n}\\
&= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} t^{n} + \sum_{n=1}^{\infty} \frac{1}{n} t^{n} \\
&= 2\sum_{n=0}^{\infty} \frac{1}{2n+1} t^{2n+1}
\end{align}
が成り立つ.よって,
$$
y \coloneqq \frac{x+1}{x} \quad\leadsto\quad t = \frac{1}{2x+1}$$
より,
$$
\log\frac{x+1}{x} = 2\sum_{n=0}^{\infty} \frac{1}{2n+1}\frac{1}{(2x+1)^{2n+1}}$$
を得る.
rapid-convより
\begin{align}
\log\frac{3}{2}
&= 2\left(\frac{1}{5} + \frac{1}{3\cdot 5^{3}} + \frac{1}{5\cdot 5^{5}} + \frac{1}{7\cdot 5^{7}} + \frac{1}{9\cdot 5^{9}} +\cdots{} \right) \\
&= 0.4 + 2\left(\frac{1}{3\cdot 5^{3}} + \frac{1}{5\cdot 5^{5}} + \frac{1}{7\cdot 5^{7}} + \frac{1}{9\cdot 5^{9}} +\cdots{} \right) \\
&= 0.405333\cdots + 2\left(\frac{1}{5\cdot 5^{5}} + \frac{1}{7\cdot 5^{7}} + \frac{1}{9\cdot 5^{9}} +\cdots{} \right) \\
&= 0.405461333\cdots + 2\left(\frac{1}{7\cdot 5^{7}} + \frac{1}{9\cdot 5^{9}} +\cdots{} \right) \\
&= \textcolor{red}{0.40546}49904\cdots + 2\left(\frac{1}{9\cdot 5^{9}} +\cdots{} \right) \\
&\\
\log\frac{9}{8}
&= 2\left(\frac{1}{17} + \frac{1}{3\cdot 17^{3}} + \frac{1}{5\cdot 17^{5}} + \frac{1}{7\cdot 17^{7}}+\cdots{}\right) \\
&= 0.117647\cdots +2\left(\frac{1}{3\cdot 17^{3}} + \frac{1}{5\cdot 17^{5}} + \frac{1}{7\cdot 17^{7}}+\cdots{}\right) \\
&= 0.1177827\cdots +2\left(\frac{1}{5\cdot 17^{5}} + \frac{1}{7\cdot 17^{7}}+\cdots{}\right) \\
&= \textcolor{red}{0.11778}30\cdots +2\left(\frac{1}{7\cdot 17^{7}}+\cdots{}\right) \\
\end{align}
となるので,
$$
\log{2} \approx 0.69314,\ \log{3} \approx 1.0986$$
を得る.
$$
\int (\sin{x})e^{-x}\,\d{x} = -\frac{1}{2}(\cos{x}+\sin{x})e^{-x}$$
より
\begin{align}
\int_{2n\pi}^{(2n+1)\pi} (\sin{x})e^{-x}\,\d{x} &= \frac{1}{2}(e^{-(2n+1)\pi}+e^{-2n\pi})=\frac{e^{-\pi}+1}{2}e^{-2n\pi};\\
\int_{(2n+1)\pi}^{(2n+2)\pi} (-\sin{x})e^{-x}\,\d{x} &= \frac{1}{2}(e^{-(2n+2)\pi}+e^{-(2n+1)\pi}) = \frac{e^{-\pi}+1}{2}e^{-(2n+1)\pi};
\end{align}
が成り立つ.よって
$$
\int_{0}^{\infty} |\sin{x}|e^{-x}\,\d{x} = \frac{e^{-\pi}+1}{2} \sum_{n=0}^{\infty} e^{-n\pi} = \frac{e^{-\pi}+1}{2} \frac{1}{1-e^{-\pi}} = \frac{1}{2} \frac{e^{\frac{\pi}{2}}+e^{-\frac{\pi}{2}}}{e^{\frac{\pi}{2}}-e^{-\frac{\pi}{2}}} = \frac{1}{2}\coth\frac{\pi}{2}$$
を得る.
点列
$$
a_{n} \coloneqq \left(\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k},0\right)$$
は収束するが(cf. p.111, 例2),
$$
\sum_{n=1}^{\infty} |a_{n+1}-a_{n}| = \sum_{n=1}^{\infty} \frac{1}{n+1} = +\infty$$
となる.
$a=b$のときは明らかに発散する.$a\neq b$のとき,
$$
\frac{a_{n}}{a_{n-1}} = \frac{na+1}{nb+1} \to \frac{a}{b}$$
となるので,ダランベールの判定法より$a< b$のとき収束し$a>b$のとき発散する.
(cf. ガウスの超幾何関数 )
$$
\frac{a_{n}}{a_{n-1}} = \frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)} = \frac{1+\frac{\alpha+\beta}{n}+\frac{\alpha\beta}{n^{2}}}{1+\frac{\gamma+1}{n}+\frac{\gamma}{n^{2}}} \to 1 \quad(n\to\infty)$$
なのでダランベールの判定法は使えないが,
$$
\frac{a_{n}}{a_{n-1}} - \left(1-\frac{(\gamma+1)-(\alpha+\beta)}{n}\right) = \frac{\frac{\alpha\beta-\gamma+(\gamma+1)((\gamma+1)-(\alpha+\beta))}{n^{2}} + \frac{\gamma((\gamma+1)-(\alpha+\beta))}{n^{3}}}{1+\frac{\gamma+1}{n}+\frac{\gamma}{n^{2}}}$$
より
$$
\frac{a_{n}}{a_{n-1}} = 1-\frac{\gamma-(\alpha+\beta)+1}{n} + O\left(\frac{1}{n^{2}}\right) \quad(n\to\infty)$$
となるので,ガウスの判定法より,$\gamma>\alpha+\beta$のとき収束し$\gamma\leq \alpha+\beta$のとき発散する.
$n\to\infty$のとき
\begin{align}
\log(n^{2}-1) &= 2\log{n}+\log \left(1-\frac{1}{n^{2}}\right) = 2\log{n}-\frac{1}{n^{2}}+o\left(\frac{1}{n^{2}}\right);\\
\log(n^{3}+1) &= 3\log{n} + \log \left(1+\frac{1}{n^{3}}\right) = 3\log{n}+\frac{1}{n^{3}} +o\left(\frac{1}{n^{3}}\right);
\end{align}
となるので,
$$
\frac{(n^{2}-1)\log(n^{2}-1)}{(n^{3}+1)\log(n^{3}+1)} \sim \frac{2}{3n} \quad(n\to\infty)$$
が得られ,したがって発散する.
$$ \frac{n^{2}+(\log\log{n})^{8}}{\sqrt{n^{6}-1}(\log{n})^{2}+\log{n}} \sim \frac{n^{2}(1+o(1))}{n^{3}(\log{n})^{2}(1+o(1))} \sim \frac{1}{n(\log{n})^{2}} \quad(n\to\infty).$$
$$
\frac{\sqrt{n^{2}+1}\log(n^{2}+1) + \sqrt{n^{2}-1}\log(n^{2}-1)}{n^{2}(\log{n})^{2}(\log\log{n})^{2}} \sim \frac{4n\log{n}}{n^{2}(\log{n})^{2}(\log\log{n})^{2}} = \frac{4}{n\log{n}(\log\log{n})^{2}} \quad(n\to\infty)$$
であり,
$$
\int_{3}^{+\infty} \frac{1}{x\log{x}(\log\log{x})^{2}}\,\d{x} = \int_{\log\log{3}}^{+\infty} \frac{1}{t^{2}}\,\d{t} = \frac{1}{\log\log{3}} <+\infty$$
であるから,収束する(命題3.22).
$$ \frac{\prod_{k=1}^{n}(k^{2}+1)}{n!\,(n+1)!\,(\log{n})^{p}} = \frac{\prod_{k=1}^{n}(k^{2}+1)}{(n!)^{2} \cdot (n+1)(\log{n})^{p}} = \prod_{k=1}^{n} \left(1+\frac{1}{k^{2}}\right) \frac{1}{(n+1)(\log{n})^{p}} \sim \frac{1}{n(\log{n})^{p}} \quad(n\to\infty).$$
(cf. d-ic, Prob.III.13.)
$$ a_{n} = (1+a+b)\log{n}+\frac{a+2b}{n}-\frac{a+4b}{2n^{2}}+o\left(\frac{1}{n^{2}}\right) \quad(n\to\infty).$$
$p>1$のとき
$$
\sum_{k=1}^{n}\frac{1}{k} \cdot \frac{\sin{n\theta}}{(\log{n})^{p}} \sim \frac{\sin{n\theta}}{(\log{n})^{p-1}} \quad(n\to\infty)$$
であり,
$$
\frac{1}{(\log{n})^{p-1}} > \frac{1}{(\log(n+1))^{p-1}} \to 0 \quad(n\to\infty)$$
であるから,p.115, 例4より$\sum (\sin{n\theta})/(\log{n})^{p-1}$は収束する.
(cf. オストロウスキの定理 )
$\varepsilon>0$とする.このとき,$n_{0}\in\mathbb{N}$であって
$$
\forall n>n_{0},\ a_{n_{0}+1} +\cdots+ a_{n} < \varepsilon \quad\leadsto\quad (n-n_{0})a_{n} < \varepsilon$$
が成り立つものが存在する.また,$a_{n}\to 0$より,$n_{1}\in\mathbb{N}$であって
$$
\forall n > n_{1},\ a_{n} < \frac{\varepsilon}{n_{0}}$$
が成り立つものが存在する.よって
$$
\forall n >n_{0}+n_{1},\ na_{n} < \varepsilon+n_{0}a_{n} < 2\varepsilon$$
が成り立つ.
$2s>1$より$\sum n^{-2s}$は収束することに注意する.このとき,コーシーの不等式(cf. 第2章演習問題8)より
$$
\sum_{n=1}^{N} \frac{|a_{n}|}{n^{s}} \leq \left(\sum_{n=1}^{N} a_{n}^{2}\right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{N} \frac{1}{n^{2s}}\right)^{\frac{1}{2}} \leq \left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{\infty} \frac{1}{n^{2s}}\right)^{\frac{1}{2}} <+\infty$$
が成り立つので,結論を得る.
$n\in\mathbb{N}$が十分大きいとき
$$
a_{n} = \sum_{k=1}^{n}(a_{k}-a_{k-1})+a_{0} \geq n\delta +a_{0} > 0$$
となるので,
$$
\frac{1}{a_{n}^{2}} \leq \frac{1}{(n\delta+a_{0})^{2}} \sim \frac{1}{\delta^{2}}\frac{1}{n^{2}} \quad(n\to\infty)$$
より結論を得る(cf. 定理3.19).
$$ \sum a_{n} = \sum (na_{n})\frac{1}{n}.$$
$$
a_{n}b_{n} = a_{n}(b_{n}-b_{1}) + a_{n}b_{1},\ b_{n}-b_{1}\geq 0,\ \sum a_{n}b_{1}:\text{convergent}$$
であるから,$b_{n}\geq 0$としてよい.
$\varepsilon>0$とする.仮定より,$n_{0}\in\mathbb{N}$であって
$$
n \geq n_{0},p \geq 1 \implies \left|\sum_{k=n+1}^{n+p} a_{k}\right| < \varepsilon$$
を満たすものが存在する.このとき(定理3.32の証明中の記号を用いると),$n \geq n_{0},p \geq 1$ならば
\begin{align}
|a_{n+1}b_{n+1} +\cdots+ a_{n+p}b_{n+p}|
&= |\sigma_{1}(b_{n+1}-b_{n+2}) + \cdots+ \sigma_{p-1}(b_{n+p-1}-b_{n+p}) + \sigma_{p}b_{n+p}| \\
&\leq |\sigma_{1}|(b_{n+2}-b_{n+1}) +\cdots+ |\sigma_{p-1}|(b_{n+p}-b_{n+p-1}) + |\sigma_{p}|b_{n+p} \\
&\leq \varepsilon(b_{n+p}-b_{n+1})+\varepsilon b_{n+p} \\
&\leq 2K\varepsilon
\end{align}
が成り立つ.
$\ell>1$のとき,$p \in\,]1,\ell[$を取ると,$n_{0}\in\mathbb{N}$であって
$$
n > n_{0} \implies p < n\log\frac{a_{n}}{a_{n+1}} \quad\leadsto\quad \frac{a_{n+1}}{a_{n}} < e^{-\frac{p}{n}}$$
を満たすものが存在する.よって
$$
a_{n+1} < a_{n}e^{-\frac{p}{n}} < a_{n-1}e^{-\frac{p}{n-1}}e^{-\frac{p}{n}} <\cdots< a_{1}\exp \left(-p\sum_{k=1}^{n}\frac{1}{k}\right) \sim \frac{a_{1}}{e^{p\gamma}}\frac{1}{n^{p}} \quad(n\to\infty)$$
が成り立つ(ただし$\gamma$はオイラーの定数である).
いま,$Q_{1},Q_{2}$は絶対収束なので
$$
Q_{1}Q_{2} = \prod (1+a^{2n})(1+a^{2n-1}) = \prod(1+a^{m})$$
が成り立つ.また,
$$
(1-a^{2k-1})\underbrace{(1+a^{2k-1})(1+a^{(2k-1)2})\cdots(1+a^{(2k-1)2^{N}})}_{\eqqcolon p_{k,N}} = 1-a^{(2k-1)2^{N+1}} \to 1 \quad(N\to\infty)$$
より,$b_{k}\coloneqq \lim p_{k,N}$とおき$Q_{3}$の部分積を$q_{n}$とおくと,
$$
Q_{1}Q_{2}q_{n} = Q_{1}Q_{2}(1-a)(1-a^{3})\cdots(1-a^{2n-1}) = \frac{\prod(1+a^{m})}{b_{1}b_{2}\cdots b_{n}}$$
となる.ところで,$n\in\mathbb{N}$に対して,十分大きな$N,m$を取ると
$$
1 \leq \frac{(1+a)\cdots(1+a^{m})}{p_{1,N}\cdots p_{n,N}} \leq (1+a^{2n+1})\cdots(1+a^{m})$$
が成り立つことから,
$$
1 \leq \frac{\prod(1+a^{m})}{p_{1,N}\cdots p_{n,N}} \leq \frac{\prod(1+a^{m})}{(1+a)\cdots(1+a^{2n})} \quad\leadsto\quad 1 \leq \frac{\prod(1+a^{m})}{b_{1}\cdots b_{n}} \leq \frac{\prod(1+a^{m})}{(1+a)\cdots(1+a^{2n})}$$
となるので,$n\to\infty$として
$$
1 \leq Q_{1}Q_{2}Q_{3} \leq 1$$
を得る.
(cf. Euler, Various observations on angles proceeding in geometric progression )
$0< a_{1} = 1/\sqrt{2}<1$であり
$$
0< a_{n}<1 \implies 0 < \sqrt{\frac{1}{2}} < \sqrt{\frac{1+a_{n}}{2}} = a_{n+1} < 1$$
が成り立つので,$\theta_{n} \in \,]0,\pi/2[$であって$a_{n}=\cos\theta_{n}$なるものがただ一つ存在する.さらに,$\theta\coloneqq \pi/2$とおくと
$$
a_{0} = 0 = \cos\theta$$
であり,
$$
\cos\theta_{n+1} = \sqrt{\frac{1+\cos\theta_{n}}{2}} \quad\leadsto\quad \cos\theta_{n} = 2(\cos\theta_{n+1})^{2}-1 = \cos(2\theta_{n+1}),\ \theta_{n},2\theta_{n+1} \in [0,\pi]$$
より
$$
\theta_{n}=\frac{\theta}{2^{n}} \implies \theta_{n+1}=\frac{\theta}{2^{n+1}}$$
が成り立つので,結局
$$
p_{n} = a_{1}\cdots a_{n} = \cos\frac{\theta}{2} \cdots \cos\frac{\theta}{2^{n}}$$
となる.ところで,
$$
p_{n}\sin\frac{\theta}{2^{n}} = \frac{p_{n-1}}{2}\sin\frac{\theta}{2^{n-1}} = \frac{p_{n-2}}{2^{2}}\sin\frac{\theta}{2^{n-2}} =\cdots= \frac{p_{1}}{2^{n-1}}\sin\frac{\theta}{2} = \frac{\sin\theta}{2^{n}}$$
が成り立つので,
$$
p_{n} = \frac{\sin\theta}{2^{n}\sin\frac{\theta}{2^{n}}} = \frac{\sin\theta}{\theta} \frac{\frac{\theta}{2^{n}}}{\sin\frac{\theta}{2^{n}}} \to \frac{\sin\theta}{\theta} = \frac{2}{\pi} \quad(n\to\infty)$$
を得る.