$$\newcommand{C}[0]{\mathbb{C}}
\newcommand{div}[0]{\mathrm{div}}
\newcommand{division}[0]{÷}
\newcommand{grad}[0]{\mathrm{grad}\ }
\newcommand{N}[0]{\mathbb{N}}
\newcommand{Q}[0]{\mathbb{Q}}
\newcommand{R}[0]{\mathbb{R}}
\newcommand{rot}[0]{\mathrm{rot}\ }
\newcommand{Z}[0]{\mathbb{Z}}
$$
追記
今更(2021/03/15)気づいたんですが,これ
解説8
の特殊な場合($s=0$)なので直ちに示せますね……まあこの記事は消さずに置いときます.
@integralsbot
さんがツイートした
こちらの定理
の解説です.
以下の等式が成り立ちます.
$\displaystyle\int_0^1\left\lfloor\frac{1}{x}\right\rfloor^{-1}\mathrm{d}x=\zeta\left(2\right)-1$
解説
\begin{align*}
&\int_0^1\left\lfloor\frac{1}{x}\right\rfloor^{-1}\mathrm{d}x\\
=&\lim_{\varepsilon\rightarrow+0}\int_\varepsilon^1\left\lfloor\frac{1}{x}\right\rfloor^{-1}\mathrm{d}x\\
=&\lim_{\varepsilon\rightarrow+0}\int_\frac{1}{\varepsilon}^1\left\lfloor t\right\rfloor^{-1}\left(-\frac{\mathrm{d}t}{t^2}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(\sum_{k=1}^\left\lfloor\frac{1}{\varepsilon}\right\rfloor\int_k^{k+1}\frac{\mathrm{d}t}{\left\lfloor t\right\rfloor t^2}-\int_\frac{1}{\varepsilon}^{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}\frac{\mathrm{d}t}{\left\lfloor t\right\rfloor t^2}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(\sum_{k=1}^\left\lfloor\frac{1}{\varepsilon}\right\rfloor\int_k^{k+1}\frac{\mathrm{d}t}{kt^2}-\int_\frac{1}{\varepsilon}^{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}\frac{\mathrm{d}t}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor t^2}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(\sum_{k=1}^\left\lfloor\frac{1}{\varepsilon}\right\rfloor\left[-\frac{1}{kt}\right]_{t=k}^{k+1}-\left[-\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor t}\right]_{t=\frac{1}{\varepsilon}}^{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(\sum_{k=1}^\left\lfloor\frac{1}{\varepsilon}\right\rfloor\left(\frac{1}{k+1}-\frac{1}{k}+\frac{1}{k^2}\right)+\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}-\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}-\frac{\varepsilon}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}-1+H_{\left\lfloor\frac{1}{\varepsilon}\right\rfloor,2}-\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1}+\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}-\frac{\varepsilon}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(H_{\left\lfloor\frac{1}{\varepsilon}\right\rfloor,2}-1+\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}-\frac{\varepsilon}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}\right)\\
=&\lim_{\varepsilon\rightarrow+0}\left(H_{\left\lfloor\frac{1}{\varepsilon}\right\rfloor,2}-1+\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}-\frac{1}{\left\lfloor\frac{1}{\varepsilon}\right\rfloor}\varepsilon\right)\\
=&\zeta\left(2\right)-1+0-0\cdot0\\
=&\zeta\left(2\right)-1
\end{align*}
なので,$\displaystyle\int_0^1\left\lfloor\frac{1}{x}\right\rfloor^{-1}\mathrm{d}x=\zeta\left(2\right)-1$です.$\blacksquare$