$$\newcommand{acoloneqq}[0]{\ &\hspace-2pt\coloneqq}
\newcommand{ar}[1]{\operatorname{ar{#1}}}
\newcommand{arc}[1]{\operatorname{arc{#1}}}
\newcommand{asupplement}[1]{&\hspace{#1}\textsf}
\newcommand{beginend}[2]{{\begin{#1}#2\end{#1}}}
\newcommand{bm}[0]{\boldsymbol}
\newcommand{bscolor}[1]{\color{var(--bs-#1)}}
\newcommand{bscolorbox}[1]{\colorbox{var(--bs-#1)}}
\newcommand{bsrowcolor}[1]{\rowcolor{var(--bs-#1)}}
\newcommand{C}[0]{\mathbb C}
\newcommand{Defarrow}[0]{\xLeftrightarrow{\textrm{def}}}
\newcommand{fqty}[0]{\!\qty}
\newcommand{hcfrac}[3]{{\frac{#1}{#2}\genfrac{}{}0{}{}{#3}}}
\newcommand{hen}[1]{{(\textrm{{#1}辺})}}
\newcommand{hygeo}[6]{{{}_{#1}{#2}_{#3}{\qty[\beginend{matrix*}{#4\\ #5}\ ;{#6}]}}}
\newcommand{In}[0]{\in\mathbb}
\newcommand{kfrac}[0]{\mathop{\Large\raise-.8pt{\textrm K}}}
\newcommand{Kfrac}[0]{\mathop{\huge\raise-2.2pt{\textrm K}}}
\newcommand{kome}[0]{\textreferencemark}
\newcommand{leftshiftarrow}[0]{{\substack{\curvearrowright\\ \leftharpoondown}}}
\newcommand{lr}[3]{{\left#1{#2}\right#3}}
\newcommand{lvvr}[2]{\lr{#1}{\negmedspace\lr|{#2}|\negmedspace}}
\newcommand{N}[0]{\mathbb N}
\newcommand{newop}[1]{\DeclareMathOperator{#1}{#1}}
\newcommand{ot}[0]{\leftarrow}
\newcommand{P}[0]{\mathbb P}
\newcommand{Q}[0]{\mathbb Q}
\newcommand{R}[0]{\mathbb R}
\newcommand{RANGE}[0]{}\newcommand{rangeex}[6][,]{{#2{#3}_{#5}#4#1\cdots#1#2{#3}_{#6}#4}}\newcommand{range}[2][,]{\rangeex[#1]{}{#2}{}}{}
\newcommand{REQUIRE}[0]{}\require{physics}{}
\newcommand{rightshiftarrow}[0]{{\substack{\curvearrowleft\\ \rightharpoondown}}}
\newcommand{rprod}[0]{\mathop{\prod\!\llap\coprod}}
\newcommand{sahen}[0]{\hen左}
\newcommand{STIRLING}[0]{}\newcommand{stirling}[3][]{{\qty[\beginend{matrix}{{#2}\\ {#3}}{#1}]}}\newcommand{Stirling}[3][]{{\qty{\beginend{matrix}{{#2}\\ {#3}}{#1}}}}{}
\newcommand{uhen}[0]{\hen右}
\newcommand{vbin}[1]{\mathbin{{#1}\!\llap|\ }}
\newcommand{Z}[0]{\mathbb Z}
\newcommand{zzCOMPLEXPARTS}[0]{}\let\Re\relax\newop{Re}\let\Im\relax\newop{Im}{}
$$
定理
ガンマ関数の倍数公式
$\displaystyle \Gamma(nz) =
(2\pi)^\frac{1-n}2n^{nz-\frac12}\prod_{k=0}^{n-1} \Gamma\fqty(z+\frac kn)$
補題
$\displaystyle \prod_{k=1}^{n-1} \sin\frac{k\pi}n = 2^{1-n}n$
$\beginend{align}{
\sahen &=
\prod_{k=1}^{n-1} \qty(i\sinh\fqty(-\frac{k\pi i}n)) =
\qty(\frac i2)^{n-1}\prod_{k=1}^{n-1} \qty(e^{-\frac{k\pi i}n}-e^\frac{k\pi i}n) \\&=
\qty(\frac i2)^{n-1}e^{-\frac{\pi i}n\frac{n(n-1)}2}\prod_{k=1}^{n-1} \qty(1-e^\frac{2k\pi i}n) \\&=
\qty(\frac i2)^{n-1}e^{-\frac{(n-1)\pi i}2}\lim_{a\to1} \frac1{a-1}\prod_{k=0}^{n-1} \qty(a-e^\frac{2k\pi i}n) \\&=
\qty(\frac i2)^{n-1}i^{-n+1}\lim_{a\to1} \frac{a^n-1}{a-1} =
\uhen
}$
ディガンマ関数の倍数公式
$\displaystyle n\psi(nz) = n\ln n + \sum_{k=0}^{n-1} \psi\fqty(z+\frac kn)$
証明
証明
ガンマ関数の倍数公式
補題3を両辺積分して、
$\beginend{alignat}{2
\ln\Gamma(nz) &=
n\ln n\cdot z + \sum_{k=0}^{n-1} \ln\Gamma\fqty(z+\frac kn) + C \\
\Gamma(nz) &= Dn^{nz}\prod_{k=0}^{n-1} \Gamma\fqty(z+\frac kn) \quad\fqty(D\coloneqq e^C) \\
\asupplement{-3.5em}{$z=\tfrac1n$を代入して、} \\
D &=
\frac{\Gamma\fqty(\frac nn)}{n\prod_{k=0}^{n-1} \Gamma\fqty(\frac1n+\frac kn)} =
\frac1{n\prod_{k=1}^{n-1} \Gamma\fqty(\frac kn)} \\&=
\frac1{n\sqrt{\prod_{k=1}^{n-1} \Gamma\fqty(\frac kn)\Gamma\fqty(1-\frac kn)}} \\&=
\frac1n\sqrt{\prod_{k=1}^{n-1} \frac{\sin\frac{k\pi}n}\pi}
&&\hspace-8em\because\textsf{相反公式} \\&=
\frac{\sqrt{\pi^{1-n}2^{1-n}n}}n
&&\hspace-8em\because\textsf{補題2} \\&=
\frac{(2\pi)^\frac{1-n}2}{\sqrt n} \\
\asupplement{-3.5em}{よって、} \\
\Gamma(nz) &=
\frac{(2\pi)^\frac{1-n}2}{\sqrt n}n^{nz}\prod_{k=0}^{n-1} \Gamma\fqty(z+\frac kn) \\&=
(2\pi)^\frac{1-n}2n^{nz-\frac12}\prod_{k=0}^{n-1} \Gamma\fqty(z+\frac kn)
}$