$x=\cos\theta$とする. Rogers多項式は
\begin{align}
C_n(x;a|q)=\sum_{k=0}^n\frac{(a;q)_k}{(q;q)_k}\frac{(a;q)_{n-k}}{(q;q)_{n-k}}e^{i(n-2k)\theta}
\end{align}
とする.
\begin{align}
C_n(x;a|q)C_n(y;a|q)&=\frac{(a^2;q)_n}{(q;q)_n}a^{-\frac n2}\int_{-1}^1K(x,y,z;a|q)C_n(z;a|q)\,dz
\end{align}
が成り立つ. ここで,
\begin{align}
K(x,y,z;a|q)&=\frac{(a,a,q;q)_{\infty}|(ae^{2i\theta},ae^{2i\phi};q)_{\infty}|^2}{2\pi(a^2;q)_{\infty}}w(z;\sqrt a e^{i\theta+i\phi},\sqrt a e^{-i\theta+i\phi},\sqrt a e^{i\theta-i\phi},\sqrt a e^{-i\theta-i\phi})\\
w(x;a,b,c,d)&:=\left|\frac{(e^{2i\theta};q)_{\infty}}{(ae^{i\theta},be^{i\theta},ce^{i\theta},de^{i\theta};q)_{\infty}}\right|^2\frac 1{\sqrt{1-x^2}}\qquad x=\cos\theta
\end{align}
である.
$x=\cos\theta,y=\cos\phi, w=a^2ce^{i\phi}/\sqrt q$とする.
前の記事
における系1
\begin{align}
&p_n(x;a,a\sqrt q,c,c\sqrt q|q)p_n(y;a,a\sqrt q,c,c\sqrt q|q)\\
&=(a^2\sqrt q,ac,ac\sqrt q,ac\sqrt q,acq,c^2\sqrt q;q)_n(ac\sqrt q)^{-n}\\
&\qquad\cdot\sum_{m=0}^n\frac{(q^{-n},a^2c^2q^n,c\sqrt qe^{-i\phi},ace^{i(\phi-\theta)}\sqrt q,ace^{i(\phi+\theta)}\sqrt q;q)_m}{(q,ac\sqrt q,acq,c^2\sqrt q,a^2ce^{i\phi}\sqrt q;q)_m}q^m\\
&\qquad\cdot \Q{10}9{w,\sqrt wq,-\sqrt wq,ce^{i\phi},ae^{i\phi},a\sqrt qe^{i\phi},ae^{i\theta},ae^{-i\theta},a^2c^2q^m,q^{-m}}{\sqrt w,-\sqrt w,a^2\sqrt q,ac\sqrt q,ac,ace^{i(\phi-\theta)}\sqrt q,ace^{i(\phi+\theta)}\sqrt q,e^{i\phi}q^{\frac 12-m}/c,a^2ce^{i\phi}q^{\frac 12+m}}q
\end{align}
より,
\begin{align}
r_n(x;a,b,c,d|q):=\Q43{q^{-n},abcdq^{n-1},ae^{i\theta},ae^{-i\theta}}{ab,ac,ad}q
\end{align}
とすると,
\begin{align}
&r_n(x;a,a\sqrt q,c,c\sqrt q|q)r_n(y;a,a\sqrt q,c,c\sqrt q|q)\\
&=\frac{(acq,c^2\sqrt q;q)_n}{(ac,a^2\sqrt q;q)_n}(c\sqrt q/a)^{-n}\sum_{m=0}^n\frac{(q^{-n},a^2c^2q^n,c\sqrt qe^{-i\phi},ace^{i(\phi-\theta)}\sqrt q,ace^{i(\phi+\theta)}\sqrt q;q)_m}{(q,ac\sqrt q,acq,c^2\sqrt q,a^2ce^{i\phi}\sqrt q;q)_m}q^m\\
&\qquad\cdot \Q{10}9{w,\sqrt wq,-\sqrt wq,ce^{i\phi},ae^{i\phi},a\sqrt qe^{i\phi},ae^{i\theta},ae^{-i\theta},a^2c^2q^m,q^{-m}}{\sqrt w,-\sqrt w,a^2\sqrt q,ac\sqrt q,ac,ace^{i(\phi-\theta)}\sqrt q,ace^{i(\phi+\theta)}\sqrt q,e^{i\phi}q^{\frac 12-m}/c,a^2ce^{i\phi}q^{\frac 12+m}}q
\end{align}
となる. ここで, $c=-a$とすると,
\begin{align}
&r_n(x;a,a\sqrt q,-a,-a\sqrt q|q)r_n(y;a,a\sqrt q,-a,-a\sqrt q|q)\\
&=\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\sum_{m=0}^n\frac{(q^{-n},a^4q^n,-a\sqrt qe^{-i\phi},-a^2e^{i(\phi-\theta)}\sqrt q,-a^2e^{i(\phi+\theta)}\sqrt q;q)_m}{(q,-a^2\sqrt q,-a^2q,a^2\sqrt q,-a^3e^{i\phi}\sqrt q;q)_m}q^m\\
&\qquad\cdot W(-a^3e^{i\phi}/\sqrt q;ae^{i\phi},a\sqrt qe^{i\phi},-ae^{i\phi},ae^{i\theta},ae^{-i\theta},a^4q^m,q^{-m};q)
\end{align}
を得る. ここで,
\begin{align}
W(a;b_1,\dots,b_r;x)&:=\Q{r+3}{r+2}{a,\sqrt aq,-\sqrt aq,b_1,\dots,b_r}{\sqrt a,-\sqrt a,aq/b_1,\dots,aq/b_r}x
\end{align}
である. $w=a^2q/bcd$として,
Baileyによるnearly-poised${}_5\phi_4$の変換公式
\begin{align}
&\frac{(wq,w^2q/a^2;q)_m}{(wq/a,w^2q/a;q)_m}\Q54{a,b,c,d,q^{-m}}{aq/b,aq/c,aq/d,a^2q^{-m}/w^2}q\\
&=W(w;wb/a,wc/a,wd/a,\sqrt a,-\sqrt a,\sqrt{aq},-\sqrt{aq},w^2q^{m+1}/a,q^{-m};q)
\end{align}
において, $d=-\sqrt{aq}$とすると,
\begin{align}
&\frac{(wq,w^2q/a^2;q)_m}{(wq/a,w^2q/a;q)_m}\Q43{a,b,c,q^{-m}}{aq/b,aq/c,a^2q^{-m}/w^2}q\\
&=W(w;-\sqrt{aq}/b,-\sqrt{aq}/c,\sqrt a,-\sqrt a,\sqrt{aq},w^2q^{m+1}/a,q^{-m};q)\qquad w=-a^{\frac 32}\sqrt q/bcd
\end{align}
となる. $a\mapsto a^2e^{2i\phi},b\mapsto -\sqrt q e^{i(\phi-\theta)},c\mapsto -\sqrt qe^{i(\phi+\theta)}$とすると, $w=-a^3e^{i\phi}/\sqrt q$となり,
\begin{align}
&W(-a^3e^{i\phi}/\sqrt q;ae^{i\phi},a\sqrt qe^{i\phi},-ae^{i\phi},ae^{i\theta},ae^{-i\theta},a^4q^m,q^{-m};q)\\
&=\frac{(-a^3e^{i\phi}\sqrt q,a^2e^{-2i\phi};q)_m}{(-ae^{-i\phi}\sqrt q,a^4;q)_m}\Q43{a^2e^{2i\phi},-\sqrt qe^{i(\phi-\theta)},-\sqrt qe^{i(\phi+\theta)},q^{-m}}{-a^2\sqrt qe^{i(\phi+\theta)},-a^2\sqrt qe^{i(\phi-\theta)},e^{2i\phi}q^{1-m}/a^2}q
\end{align}
を得る. ここで,
Searsの変換公式
より,
\begin{align}
&\frac{(-a^3e^{i\phi}\sqrt q,a^2e^{-2i\phi};q)_m}{(-ae^{-i\phi}\sqrt q,a^4;q)_m}\Q43{a^2e^{2i\phi},-\sqrt qe^{i(\phi-\theta)},-\sqrt qe^{i(\phi+\theta)},q^{-m}}{-a^2\sqrt qe^{i(\phi+\theta)},-a^2\sqrt qe^{i(\phi-\theta)},e^{2i\phi}q^{1-m}/a^2}q\\
&=\frac{(-a^3e^{i\phi}\sqrt q,a^2e^{-2i\phi};q)_m}{(-ae^{-i\phi}\sqrt q,a^4;q)_m}\frac{(-\sqrt q e^{i(\theta-\phi)},q^{1-m}/a^4;q)_m}{(-a^2\sqrt qe^{i(\phi+\theta)},e^{2i\phi}q^{1-m}/a^2;q)_m}(a^2e^{2i\phi})^{m}\\
&\qquad\cdot\Q43{a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m}}{-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m}}q\\
&=\frac{(-a^3e^{i\phi}\sqrt q,-\sqrt q e^{i(\theta-\phi)};q)_m}{(-ae^{-i\phi}\sqrt q,-a^2\sqrt qe^{i(\phi+\theta)};q)_m}\Q43{a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m}}{-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m}}q
\end{align}
であるから, これを代入すると,
\begin{align}
&r_n(x;a,a\sqrt q,-a,-a\sqrt q|q)r_n(y;a,a\sqrt q,-a,-a\sqrt q|q)\\
&=\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\sum_{m=0}^n\frac{(q^{-n},a^4q^n,-a\sqrt qe^{-i\phi},-a^2e^{i(\phi-\theta)}\sqrt q,-a^2e^{i(\phi+\theta)}\sqrt q;q)_m}{(q,-a^2\sqrt q,-a^2q,a^2\sqrt q,-a^3e^{i\phi}\sqrt q;q)_m}q^m\\
&\qquad\cdot \frac{(-a^3e^{i\phi}\sqrt q,-\sqrt q e^{i(\theta-\phi)};q)_m}{(-ae^{-i\phi}\sqrt q,-a^2\sqrt qe^{i(\phi+\theta)};q)_m}\Q43{a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m}}{-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m}}q\\
&=\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\sum_{m=0}^n\frac{(q^{-n},a^4q^n,-a^2e^{i(\phi-\theta)}\sqrt q,-\sqrt q e^{i(\theta-\phi)};q)_m}{(q,-a^2\sqrt q,-a^2q,a^2\sqrt q;q)_m}q^m\\
&\qquad\cdot \Q43{a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m}}{-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m}}q
\end{align}
となる. ここで,
Askey-Wilson積分
より, $z=\cos\psi$として,
\begin{align}
&\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})(ae^{i(\phi-\theta+\psi)},ae^{i(\phi-\theta-\psi)};q)_j\,dz\\
&=\int_{-1}^1w(z;ae^{i(\phi-\theta)}q^j,ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\,dz\\
&=\frac{2\pi(a^4q^j;q)_{\infty}}{(q,a^2q^j,a^2e^{2i\phi}q^j,a^2e^{-2i\theta}q^j,a^2e^{2i\theta},a^2e^{-2i\phi},a^2;q)_{\infty}}\\
&=\frac{2\pi(a^4;q)_{\infty}}{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}\frac{(a^2,a^2e^{2i\phi},a^2e^{-2i\theta};q)_j}{(a^4;q)_j}
\end{align}
であるから,
\begin{align}
&\Q43{a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m}}{-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m}}q\\
&=\sum_{0\leq j}\frac{(a^2e^{2i\phi},a^2,a^2e^{-2i\theta},q^{-m};q)_j}{(q,-a^2\sqrt qe^{i(\phi-\theta)},a^4,-e^{i(\phi-\theta)}q^{\frac 12-m};q)_j}q^j\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\sum_{0\leq j}\frac{(q^{-m};q)_j}{(q,-a^2\sqrt qe^{i(\phi-\theta)},-e^{i(\phi-\theta)}q^{\frac 12-m};q)_j}q^j\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})(ae^{i(\phi-\theta+\psi)},ae^{i(\phi-\theta-\psi)};q)_j\,dz\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\\
&\qquad\cdot\sum_{0\leq j}\frac{(ae^{i(\phi-\theta+\psi)},ae^{i(\phi-\theta-\psi)},q^{-m};q)_j}{(q,-a^2\sqrt qe^{i(\phi-\theta)},-e^{i(\phi-\theta)}q^{\frac 12-m};q)_j}q^j\,dz\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\frac{(-a\sqrt qe^{i\psi},-a\sqrt qe^{-i\psi};q)_m}{(-a^2\sqrt qe^{i(\phi-\theta)},-\sqrt qe^{i(\theta-\phi)};q)_m}\,dz
\end{align}
となるので, これを代入すると,
\begin{align}
&r_n(x;a,a\sqrt q,-a,-a\sqrt q|q)r_n(y;a,a\sqrt q,-a,-a\sqrt q|q)\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\sum_{m=0}^n\frac{(q^{-n},a^4q^n,-a^2e^{i(\phi-\theta)}\sqrt q,-\sqrt q e^{i(\theta-\phi)};q)_m}{(q,-a^2\sqrt q,-a^2q,a^2\sqrt q;q)_m}q^m\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\frac{(-a\sqrt qe^{i\psi},-a\sqrt qe^{-i\psi};q)_m}{(-a^2\sqrt qe^{i(\phi-\theta)},-\sqrt qe^{i(\theta-\phi)};q)_m}\,dz\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\sum_{m=0}^n\frac{(q^{-n},a^4q^n,-a\sqrt qe^{i\psi},-a\sqrt qe^{-i\psi};q)_m}{(q,-a^2\sqrt q,-a^2q,a^2\sqrt q;q)_m}q^m\,dz\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\frac{1+a^2q^n}{1+a^2}(-\sqrt q)^{-n}\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})\frac{(-a\sqrt q)^np_n(z;a,a\sqrt q,-a,-a\sqrt q)}{(a^2\sqrt q,-a^2\sqrt q,-a^2q;q)_n}\,dz\\
&=\frac{(q,a^2,a^2;q)_{\infty}|(a^2e^{2i\theta},a^2e^{2i\phi};q)_{\infty}|^2}{2\pi(a^4;q)_{\infty}}\\
&\qquad\cdot\int_{-1}^1w(z;ae^{i(\phi-\theta)},ae^{i(\theta-\phi)},ae^{i(\theta+\phi)},ae^{-i(\theta+\phi)})r_n(z;a,a\sqrt q,-a,-a\sqrt q)\,dz
\end{align}
つまり,
\begin{align}
&r_n(x;a,a\sqrt q,-a,-a\sqrt q|q)r_n(y;a,a\sqrt q,-a,-a\sqrt q|q)\\
&=\int_{-1}^1K(x,y,z;a^2|q)r_n(z;a,a\sqrt q,-a,-a\sqrt q)\,dz
\end{align}
を得る. ここで,
前の記事
で示した表示
\begin{align}
C_n(x;a^2|q)=\frac{(a^4;q)_n}{(q;q)_n}a^{-n}r_n(x;a,a\sqrt q,-a,-a\sqrt q|q)
\end{align}
を代入すると,
\begin{align}
C_n(x;a^2|q)C_n(y;a^2|q)&=\frac{(a^4;q)_n}{(q;q)_n}a^{-n}\int_{-1}^1K(x,y,z;a^2|q)C_n(z;a^2|q)\,dz
\end{align}
となるから, $a\mapsto \sqrt a$とすると定理を得る.
これはGegenbauerの積公式
\begin{align}
\frac{C_n^a(x)C_n^a(y)}{C_n^a(1)C_n^a(1)}&=\int_{-1}^1K(x,y,z)\frac{C_n^a(z)}{C_n^a(1)}\,dz\\
K(x,y,z)&:=\begin{cases}
\displaystyle\frac{\Gamma\left(a+\frac 12\right)}{\Gamma(a)\Gamma\left(\frac 12\right)}\frac{(1-x^2-y^2-z^2+2xyz)^{a-1}}{((1-x^2)(1-y^2))^{a-\frac 12}}\qquad 1-x^2-y^2-z^2+2xyz\geq 0\\
0\qquad 1-x^2-y^2-z^2+2xyz<0
\end{cases}
\end{align}
の$q$類似になっているようである.