【シリーズ一覧】
第一回「定義」
第二回「表示」
第三回「同値」
第四回「不変量」
第五回「ジョーンズ多項式(1)」
第六回「ジョーンズ多項式(2)」
ジョーンズは作用素環論という解析学の一分野の研究者であり,今回扱うジョーンズ多項式もその文脈で組みひも群の表現から発見されました.当時のトポロジストたちに衝撃を与える斬新な不変量で,これを契機として新たな不変量が大量に発見され量子トポロジーという新たな分野が花開きました.いよいよ結び目理論のおいしいところです.
ジョーンズ多項式は有向絡み目の正則射影図
ただし,
負冪も許すので正しくは
ジョーンズ多項式は射影図のライデマイスター移動に対して不変であり,どの有向絡み目に対してもただ一つ存在する.すなわち結び目の不変量である.また,結び目であれば向きの付け方によらずに定まる.
ジョーンズ多項式の同値な定義は複数あり,例えば状態和(分配関数)を用いた定義では数学者の気になる「存在と一意性」やライデマイスター不変性を比較的容易に確かめられます.ですが,今回は計算がしやすいスケイン関係式による定義を採用しました.前回言及したアレクサンダー多項式も係数の変えたスケイン関係式から得ることができ,それらの一般化であるホンフリー多項式というものもあります.
・アレクサンダー多項式
・ホンフリー多項式
準備のためにまずは自明な結び目の分離和(射影図の各成分が交わらない)のジョーンズ多項式を計算します.成分数
それぞれが正負の交点と平滑化に対応しているので,スケイン関係式から
よって
同様にして成分数が
次は最も簡単な非自明結び目である三葉結び目でやってみます.
一つ交点を選びスケイン関係式が利用できるようにかき換えていくことを繰り返して樹形図を作ります(スケイン分解樹と呼ぶ).
それぞれの末端の自明な絡み目から上に向けて関係式を使っていけば
それでは,ジョーンズ多項式が両手型であるか,すなわち自身とその鏡像が同値であるか考えましょう.鏡像に関してもう一度スケイン分解樹をかいても良いですが,ここはジョーンズ多項式の一般的性質を使いましょう.結び目の射影図の鏡像をとるとき,交点の上下関係を全て逆にすればよいですね.よって定義式から
となります.ところで,三葉結び目のジョーンズ多項式を見ると
そんなジョーンズ多項式でも可逆性,すなわち結び目に対する
加えて,どのような多項式ならそれをジョーンズ多項式とするような有向絡み目が存在するかの特徴づけも明らかになっていません.もちろんすぐにわかる必要条件もあり,