前の記事 でGosper予想の$q$類似を一般化するGasper-Rahmanによる3次の変換公式を示した. 今回は同様の手法によって二次変換公式を示したいと思う. これは 前の記事 で示したGasper-Rahmanの二次変換公式とはまた別のものであり, タイトルについている2は単に記事を区別するためのものである.
前と同様に,
Gasper-Rahmanのbibasic超幾何級数の和公式
において, $m=0, c=q^{-n}$とした式
\begin{align}
&\sum_{k=0}^n\frac{(1-adp^kq^k)(1-bp^kq^{-k}/d)}{(1-ad)(1-b/d)}\frac{(a,b;p)_k(q^{-n},ad^2q^n/b;q)_k}{(dq,adq/b;q)_k(adpq^n,bpq^{-n}/d;p)_k}q^k\\
&=\frac{(1-d)(1-ad/b)(1-adq^n)(1-dq^n/b)}{(1-ad)(1-d/b)(1-dq^n)(1-adq^n/b)}
\end{align}
から始める. $q=p^2$としてから$p\mapsto q, d\mapsto c$とすると,
\begin{align}
&\sum_{k=0}^n\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(q^{-2n},ac^2q^{2n}/b;q^2)_k}{(cq^2,acq^2/b;q^2)_k(acq^{2n+1},bq^{1-2n}/c;q)_k}q^{2k}\\
&=\frac{(1-c)(1-ac/b)(1-acq^{2n})(1-cq^{2n}/b)}{(1-ac)(1-c/b)(1-cq^{2n})(1-acq^{2n}/b)}
\end{align}
両辺に
\begin{align}
\frac{(ac^2/b;q^2)_n(c/b;q)_{2n}}{(q^2;q^2)_n(acq;q)_{2n}}C_n
\end{align}
を掛けて$n$に関して足し合わせると,
\begin{align}
&\sum_{0\leq n}\frac{(ac^2/b;q^2)_n(cq/b;q)_{2n}(1-c)(1-ac/b)}{(q^2;q^2)_n(ac;q)_{2n}(1-cq^{2n})(1-acq^{2n}/b)}C_n\\
&=\sum_{0\leq n}\frac{(ac^2/b;q^2)_n(c/b;q)_{2n}}{(q^2;q^2)_n(acq;q)_{2n}}C_n\\
&\qquad\cdot\sum_{k=0}^n\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(q^{-2n},ac^2q^{2n}/b;q^2)_k}{(cq^2,acq^2/b;q^2)_k(acq^{2n+1},bq^{1-2n}/c;q)_k}q^{2k}\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k}{(cq^2,acq^2/b;q^2)_k}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(ac^2/b;q^2)_{n+k}(c/b;q)_{2n-k}}{(q^2;q^2)_{n-k}(acq;q)_{2n+k}}C_n\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k}{(cq^2,acq^2/b;q^2)_k}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(ac^2/b;q^2)_{n+2k}(c/b;q)_{2n+k}}{(q^2;q^2)_{n}(acq;q)_{2n+3k}}C_{n+k}\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b,c/b;q)_k(ac^2/b;q^2)_{2k}}{(cq^2,acq^2/b;q^2)_k(acq;q)_{3k}}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(ac^2q^{4k}/b;q^2)_{n}(cq^k/b;q)_{2n}}{(q^2;q^2)_{n}(acq^{3k+1};q)_{2n}}C_{n+k}
\end{align}
ここで,
\begin{align}
C_n=\frac{(1-ac^2q^{4n}/b)(d,e,f;q^2)_n}{(1-ac^2/b)(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_n}q^{2n}
\end{align}
とすると,
\begin{align}
W(a;b_1,\dots,b_r;q;z):=\Q{r+3}{r+2}{a,\sqrt aq,-\sqrt aq,b_1,\dots,b_r}{\sqrt a,-\sqrt a,aq/b_1,\dots,aq/b_r}{q;z}
\end{align}
として,
\begin{align}
&W(ac^2/b;c,ac/b,d,e,f,cq/b,cq^2/b;q^2;q^2)\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b,c/b;q)_k(ac^2/b;q^2)_{2k}}{(cq^2,acq^2/b;q^2)_k(acq;q)_{3k}}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\sum_{0\leq n}\frac{(ac^2q^{4k}/b;q^2)_{n}(cq^k/b;q)_{2n}}{(q^2;q^2)_{n}(acq^{3k+1};q)_{2n}}\frac{(1-ac^2q^{4n+4k}/b)(d,e,f;q^2)_{n+k}}{(1-ac^2/b)(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_{n+k}}q^{2n+2k}\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b,c/b;q)_k(ac^2q^2/b;q^2)_{2k}}{(cq^2,acq^2/b;q^2)_k(acq;q)_{3k}}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\frac{(d,e,f;q^2)_k}{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_{k}}q^{2k}\\
&\qquad\cdot W(ac^2q^{4k}/b;dq^{2k},eq^{2k},fq^{2k},cq^k/b,cq^{k+1}/b;q^2;q^2)
\end{align}
ここで, $a^2c^2q=def$とすると, 右辺の$W$はbalancedであるから,
non-terminating Jacksonの和公式
より,
\begin{align}
&W(ac^2q^{4k}/b;dq^{2k},eq^{2k},fq^{2k},cq^k/b,cq^{k+1}/b;q^2;q^2)\\
&=\frac{(ac^2q^{4k+2}/b,ac^2q^2/bde,acq^{k+2}/d,acq^{k+1}/d,acq^{k+2}/e,acq^{k+1}/e,abq^{2k+1},bfq^{-2k}/ac^2;q^2)_{\infty}}{(ac^2q^{2k+2}/bd,ac^2q^{2k+2}/be,acq^{3k+2},acq^{3k+1},bdf/ac^2,bef/ac^2,fq^{-k}/ac,fq^{1-k}/ac;q^2)_{\infty}}\\
&\qquad+\frac{bf}{ac^2}q^{-2k}\frac{(ac^2q^{4k+2}/b,bfq^{2-2k}/ac^2,fq^2/d,fq^2/e,bfq^{k+2}/c,bfq^{k+1}/c,dq^{2k},eq^{2k},cq^k/b,cq^{k+1}/b;q^2)_{\infty}}{(ac^2q^{2k+2}/bd,ac^2q^{2k+2}/be,ac^2q^{2k+2}/bf,acq^{3k+2},acq^{3k+1},bdf/ac^2,bef/ac^2,fq^{-k}/ac,fq^{1-k}/ac,bf^2q^2/ac^2;q^2)_{\infty}}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
&=\frac{(ac^2q^{4k+2}/b,ac^2q^2/bde,abq^{2k+1},bfq^{-2k}/ac^2;q^2)_{\infty}(acq^{k+1}/d,acq^{k+1}/e;q)_{\infty}}{(ac^2q^{2k+2}/bd,ac^2q^{2k+2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq^{3k+1},fq^{-k}/ac;q)_{\infty}}\\
&\qquad+\frac{bf}{ac^2}q^{-2k}\frac{(ac^2q^{4k+2}/b,bfq^{2-2k}/ac^2,fq^2/d,fq^2/e,dq^{2k},eq^{2k};q^2)_{\infty}(bfq^{k+1}/c,cq^k/b;q)_{\infty}}{(ac^2q^{2k+2}/bd,ac^2q^{2k+2}/be,ac^2q^{2k+2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq^{3k+1},fq^{-k}/ac;q)_{\infty}}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be;q^2)_k(acq;q)_{3k}(f/ac;q)_{-k}}{(ac^2q^2/b;q^2)_{2k}(abq;q^2)_k(bf/ac^2;q^2)_{-k}(acq/d,acq/e;q)_k}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_k(acq;q)_{3k}(f/ac;q)_{-k}}{(ac^2q^2/b;q^2)_{2k}(bfq^2/ac^2;q^2)_{-k}(d,e;q^2)_k(bfq/c,c/b;q)_k}q^{-2k}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_k(acq;q)_{3k}}{(ac^2q^2/b;q^2)_{2k}(abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}\left(\frac{b}{cq}\right)^kq^{-\binom k2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf,ac^2/bf;q^2)_k(acq;q)_{3k}}{(ac^2q^2/b;q^2)_{2k}(d,e;q^2)_k(bfq/c,acq/f,c/b;q)_k}\left(\frac{b}{cq}\right)^kq^{-\binom k2}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
\end{align}
となるから, これを代入すると,
\begin{align}
&W(ac^2/b;c,ac/b,d,e,f,cq/b,cq^2/b;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b,c/b;q)_k(ac^2q^2/b;q^2)_{2k}}{(cq^2,acq^2/b;q^2)_k(acq;q)_{3k}}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\frac{(d,e,f;q^2)_k}{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_{k}}q^{2k}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_k(acq;q)_{3k}}{(ac^2q^2/b;q^2)_{2k}(abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}\left(\frac{b}{cq}\right)^kq^{-\binom k2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b,c/b;q)_k(ac^2q^2/b;q^2)_{2k}}{(cq^2,acq^2/b;q^2)_k(acq;q)_{3k}}\left(\frac{cq}b\right)^kq^{\binom k2}\\
&\qquad\cdot\frac{(d,e,f;q^2)_k}{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf;q^2)_{k}}q^{2k}\\
&\qquad\cdot\frac{(ac^2q^2/bd,ac^2q^2/be,ac^2q^2/bf,ac^2/bf;q^2)_k(acq;q)_{3k}}{(ac^2q^2/b;q^2)_{2k}(d,e;q^2)_k(bfq/c,acq/f,c/b;q)_k}\left(\frac{b}{cq}\right)^kq^{-\binom k2}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,e,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}q^{k}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(f,ac^2/bf;q^2)_k}{(cq^2,acq^2/b;q^2)_k(bfq/c,acq/f;q)_k}q^{2k}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)
\end{align}
が得られる. ここで, 第2項は足し合わせる順番を入れ替えて,
\begin{align}
&\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(f,ac^2/bf;q^2)_k}{(cq^2,acq^2/b;q^2)_k(bfq/c,acq/f;q)_k}q^{2k}\\
&\qquad\cdot W(bf^2/ac^2;bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2;q^2)\\
&=\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(f,ac^2/bf;q^2)_k}{(cq^2,acq^2/b;q^2)_k(bfq/c,acq/f;q)_k}q^{2k}\\
&\qquad\cdot \sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,fq^{2k},fq^{-k}/ac,fq^{1-k}/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^{2-2k}/ac^2,bfq^{k+2}/c,bfq^{k+1}/c;q^2)_j}q^{2j}\\
&=\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e;q^2)_j}\left(-\frac{fq}{ab}\right)^jq^{2\binom j2}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(f;q^2)_{k+j}(ac^2/bf;q^2)_{k-j}}{(cq^2,acq^2/b;q^2)_k(bfq/c;q)_{k+2j}(acq/f;q)_{k-2j}}q^{2k}\\
&=\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f;q^2)_j(f/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}q^{2j}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(fq^{2j},ac^2q^{-2j}/bf;q^2)_{k}}{(cq^2,acq^2/b;q^2)_k(bfq^{2j+1}/c,acq^{2j+1}/f;q)_{k}}q^{2k}
\end{align}
ここで,
Gasper-Rahmanのbibasic超幾何級数の和公式
の系
\begin{align}
&\sum_{0\leq k}\frac{(1-adp^kq^k)(1-bp^kq^{-k}/d)}{(1-ad)(1-b/d)}\frac{(a,b;p)_k(c,ad^2/bc;q)_k}{(dq,adq/b;q)_k(adp/c,bcp/d;p)_k}q^k\\
&=\frac{1}{d(1-ad)(1-b/d)(1-c/d)(1-ad/bc)}\frac{(a,b;p)_{\infty}(c,ad^2/bc;q)_{\infty}}{(dq,adq/b;q)_{\infty}(adp/c,bcp/d;p)_{\infty}}\\
&\qquad-\frac{(1-d)(1-ad/b)(1-ad/c)(1-bc/d)}{d(1-ad)(1-b/d)(1-c/d)(1-ad/bc)}
\end{align}
において, $q=p^2$としてから$p\mapsto q$とすると,
\begin{align}
&\sum_{0\leq k}\frac{(1-adq^{3k})(1-bq^{-k}/d)}{(1-ad)(1-b/d)}\frac{(a,b;q)_k(c,ad^2/bc;q^2)_k}{(dq^2,adq^2/b;q^2)_k(adq/c,bcq/d;q)_k}q^{2k}\\
&=\frac{1}{d(1-ad)(1-b/d)(1-c/d)(1-ad/bc)}\frac{(a,b;q)_{\infty}(c,ad^2/bc;q^2)_{\infty}}{(dq^2,adq^2/b;q^2)_{\infty}(adq/c,bcq/d;q)_{\infty}}\\
&\qquad-\frac{(1-d)(1-ad/b)(1-ad/c)(1-bc/d)}{d(1-ad)(1-b/d)(1-c/d)(1-ad/bc)}
\end{align}
となる. $d\mapsto c,c\mapsto fq^{2j}$とすると,
\begin{align}
&\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(fq^{2j},ac^2q^{-2j}/bf;q^2)_{k}}{(cq^2,acq^2/b;q^2)_k(bfq^{2j+1}/c,acq^{2j+1}/f;q)_{k}}q^{2k}\\
&=\frac{1}{c(1-ac)(1-b/c)(1-fq^{2j}/c)(1-acq^{-2j}/bf)}\frac{(a,b;q)_{\infty}(fq^{2j},ac^2q^{-2j}/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq^{1-2j}/f,bfq^{2j+1}/c;q)_{\infty}}\\
&\qquad-\frac{(1-c)(1-ac/b)(1-acq^{-2j}/f)(1-bfq^{2j}/c)}{c(1-ac)(1-b/c)(1-fq^{2j}/c)(1-acq^{-2j}/bf)}\\
&=-\frac{1-fq^{2j}/ac}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\frac{(a,b;q)_{\infty}(fq^{2j},ac^2q^{-2j}/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq^{-2j}/f,bfq^{2j+1}/c;q)_{\infty}}\\
&\qquad+\frac{(1-c)(1-ac/b)(1-fq^{2j}/ac)(1-bfq^{2j}/c)}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\\
&=-\frac{1-fq^{2j}/ac}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(ac/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\frac{(bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}{(f;q^2)_j(fq/ac;q)_{2j}}\left(-\frac{fq}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\frac{(1-c)(1-ac/b)(1-fq^{2j}/ac)(1-bfq^{2j}/c)}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\\
&=\frac{f}{ac(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\frac{(bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}{(f;q^2)_j(f/ac;q)_{2j}}\left(-\frac{fq}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\frac{(1-c)(1-ac/b)(1-fq^{2j}/ac)(1-bfq^{2j}/c)}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\\
\end{align}
であるから, 先ほどの第2項は
\begin{align}
&\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f;q^2)_j(f/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}q^{2j}\\
&\qquad\cdot\sum_{0\leq k}\frac{(1-acq^{3k})(1-bq^{-k}/c)}{(1-ac)(1-b/c)}\frac{(a,b;q)_k(fq^{2j},ac^2q^{-2j}/bf;q^2)_{k}}{(cq^2,acq^2/b;q^2)_k(bfq^{2j+1}/c,acq^{2j+1}/f;q)_{k}}q^{2k}\\
&=\frac{f}{ac(1-ac)(1-c/b)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f;q^2)_j(f/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}q^{2j}\\
&\qquad\cdot\frac 1{(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\frac{(bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}{(f;q^2)_j(f/ac;q)_{2j}}\left(-\frac{fq}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f;q^2)_j(f/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2;q^2)_j(bfq/c;q)_{2j}}q^{2j}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)(1-fq^{2j}/ac)(1-bfq^{2j}/c)}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\\
&=\frac{f}{ac(1-ac)(1-c/b)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e;q^2)_j(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f;q^2)_j(fq/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2;q^2)_j(bf/c;q)_{2j}}q^{2j}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)(1-f/ac)(1-bf/c)}{(1-ac)(1-c/b)(1-fq^{2j}/c)(1-bfq^{2j}/ac)}\\
&=\frac{f}{ac(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f/c,bf/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,fq^2/c,bfq^2/ac;q^2)_j}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&\qquad+ \frac{(1-c)(1-ac/b)(1-f/ac)(1-bf/c)}{(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f,f/c,bf/ac;q^2)_j(fq/ac;q)_{2j}}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,bfq^2/ac^2,fq^2/c,bfq^2/ac;q^2)_j(bf/c;q)_{2j}}q^{2j}\\
&=\frac{f}{ac(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f/c,bf/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,fq^2/c,bfq^2/ac;q^2)_j}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&\qquad+ \frac{(1-c)(1-ac/b)(1-f/ac)(1-bf/c)}{(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,bef/ac^2,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)
\end{align}
よって,
\begin{align}
&W(ac^2/b;c,ac/b,d,e,f,cq/b,cq^2/b;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,e,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}q^{k}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\frac{f}{ac(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}\frac{(a,b;q)_{\infty}(f,ac^2/bf;q^2)_{\infty}}{(cq^2,acq^2/b;q^2)_{\infty}(acq/f,bfq/c;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f/c,bf/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,fq^2/c,bfq^2/ac;q^2)_j}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bfq/c,c/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)(1-f/ac)(1-bf/c)}{(1-ac)(1-c/b)(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,bef/ac^2,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,e,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}q^{k}\\
&\qquad+\frac{bf^2}{a^2c^3}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e,f,ac^2/bf;q^2)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2,cq^2,acq^2/b;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b;q)_{\infty}}{(1-f/c)(1-bf/ac)(ac,f/ac,acq/f;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f/c,bf/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,fq^2/c,bfq^2/ac;q^2)_j}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bf/c,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(ac,fq/ac;q)_{\infty}}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)}{(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,bef/ac^2,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)
\end{align}
ここで,
Watsonの変換公式
の系
\begin{align}
&\sum_{0\leq j}\frac{(1-aq^{2j})(a,b,c,d,e;q)_j}{(1-a)(q,aq/b,aq/c,aq/d,aq/e;q)_j}\left(-\frac{a^2q^2}{bcde}\right)^jq^{\binom j2}\\
&=\frac{(aq,aq/de;q)_{\infty}}{(aq/d,aq/e;q)_{\infty}}\Q32{aq/bc,d,e}{aq/b,aq/c}{\frac{aq}{de}}
\end{align}
より,
\begin{align}
&\sum_{0\leq j}\frac{(1-bf^2q^{2j}/ac^2)(bf^2/ac^2,bdf/ac^2,bef/ac^2,f/c,bf/ac;q^2)_j}{(1-bf^2/ac^2)(q^2,fq^2/d,fq^2/e,fq^2/c,bfq^2/ac;q^2)_j}\left(-\frac{fq^3}{ab}\right)^jq^{2\binom j2}\\
&=\frac{(bf^2q^2/ac^2,q^2;q^2)_{\infty}}{(fq^2/c,bfq^2/ac;q^2)_{\infty}}\Q32{ac^2q^2/bde,f/c,bf/ac}{fq^2/d,fq^2/e}{q^2;q^2}
\end{align}
であるから, これを代入して,
\begin{align}
&W(ac^2/b;c,ac/b,d,e,f,cq/b,cq^2/b;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,ac^2q^2/bde,abq,bf/ac^2;q^2)_{\infty}(acq/d,acq/e;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,bdf/ac^2,bef/ac^2;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,e,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,acq/e,acq/f;q)_k}q^{k}\\
&\qquad+\frac{bf^2}{a^2c^3}\frac{(ac^2q^{2}/b,bfq^2/ac^2,fq^2/d,fq^2/e,d,e,f,ac^2/bf,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b;q)_{\infty}}{(ac,f/ac,acq/f;q)_{\infty}}\Q32{ac^2q^2/bde,f/c,bf/ac}{fq^2/d,fq^2/e}{q^2;q^2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,fq^2/e,d,e;q^2)_{\infty}(bf/c,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,ac^2q^{2}/be,ac^2q^{2}/bf,bdf/ac^2,bef/ac^2,bf^2q^2/ac^2;q^2)_{\infty}(ac,fq/ac;q)_{\infty}}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)}{(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,bef/ac^2,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)
\end{align}
となる. $e=a^2c^2q/df$から$e$を消去すると,
\begin{align}
&W(ac^2/b;c,ac/b,d,a^2c^2q/df,f,cq/b,cq^2/b;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,fq/ab,abq,bf/ac^2;q^2)_{\infty}(acq/d,df/ac;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,a^2c^2q/df,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,df/ac,acq/f;q)_k}q^{k}\\
&\qquad+\frac{bf^2}{a^2c^3}\frac{(ac^2q^{2}/b,bfq^2/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df,f,ac^2/bf,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,ac^2q^{2}/bf,bdf/ac^2,abq/d,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b;q)_{\infty}}{(ac,f/ac,acq/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\
&\qquad+\frac{bf}{ac^2}\frac{(ac^2q^{2}/b,bfq^{2}/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df;q^2)_{\infty}(bf/c,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,ac^2q^{2}/bf,bdf/ac^2,abq/d,bf^2q^2/ac^2;q^2)_{\infty}(ac,fq/ac;q)_{\infty}}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)}{(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,abq/d,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)\\
&=\frac{(ac^2q^{2}/b,fq/ab,abq,bf/ac^2;q^2)_{\infty}(acq/d,df/ac;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,a^2c^2q/df,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,df/ac,acq/f;q)_k}q^{k}\\
&\qquad+\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df,f,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b;q)_{\infty}}{(ac,fq/ac,ac/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\
&\qquad-\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df;q^2)_{\infty}(bf/c,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,ac^2/bf,bdf/ac^2,abq/d,bf^2q^2/ac^2;q^2)_{\infty}(ac,fq/ac;q)_{\infty}}\\
&\qquad\cdot \frac{(1-c)(1-ac/b)}{(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,abq/d,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)
\end{align}
つまり, 以下を得る.
\begin{align} &W(ac^2/b;c,ac/b,d,a^2c^2q/df,f,cq/b,cq^2/b;q^2;q^2)\\ &\qquad+\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df;q^2)_{\infty}(bf/c,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,ac^2/bf,bdf/ac^2,abq/d,bf^2q^2/ac^2;q^2)_{\infty}(ac,fq/ac;q)_{\infty}}\\ &\qquad\cdot \frac{(1-c)(1-ac/b)}{(1-f/c)(1-bf/ac)}W(bf^2/ac^2;bdf/ac^2,abq/d,f,f/c,bf/ac,fq/ac,fq^2/ac;q^2;q^2)\\ &\qquad-\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df,f,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\ &\qquad\cdot\frac{(a,b,cq/b;q)_{\infty}}{(ac,fq/ac,ac/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\ &=\frac{(ac^2q^{2}/b,fq/ab,abq,bf/ac^2;q^2)_{\infty}(acq/d,df/ac;q)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d;q^2)_{\infty}(acq,f/ac;q)_{\infty}}\\ &\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,a^2c^2q/df,f;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,df/ac,acq/f;q)_k}q^{k} \end{align}
定理1において, 特に$c=1$とすると,
\begin{align}
&1-\frac{(fq^2/d,df^2q/a^2,d,a^2q/df;q^2)_{\infty}}{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}}\\
&\qquad\cdot\frac{(b,q/b;q)_{\infty}}{(fq/a,a/f;q)_{\infty}}\Q32{fq/ab,f,bf/a}{fq^2/d,df^2q/a^2}{q^2;q^2}\\
&=\frac{(aq^{2}/b,fq/ab,abq,bf/a;q^2)_{\infty}(aq/d,df/a;q)_{\infty}}{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}(aq,f/a;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-aq^{3k}}{1-a}\frac{(a,b,q/b;q)_k(d,a^2q/df,f;q^2)_k}{(q^2,aq^2/b,abq;q^2)_k(aq/d,df/a,aq/f;q)_k}q^{k}
\end{align}
つまり,
\begin{align}
&\sum_{0\leq k}\frac{1-aq^{3k}}{1-a}\frac{(a,b,q/b;q)_k(d,a^2q/df,f;q^2)_k}{(q^2,aq^2/b,abq;q^2)_k(aq/d,df/a,aq/f;q)_k}q^{k}\\
&=\frac{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}(aq,f/a;q)_{\infty}}{(aq^{2}/b,fq/ab,abq,bf/a;q^2)_{\infty}(aq/d,df/a;q)_{\infty}}\\
&\qquad-\frac{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}(aq,f/a;q)_{\infty}}{(aq^{2}/b,fq/ab,abq,bf/a;q^2)_{\infty}(aq/d,df/a;q)_{\infty}}\\
&\qquad\cdot\frac{(fq^2/d,df^2q/a^2,d,a^2q/df;q^2)_{\infty}}{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}}\\
&\qquad\cdot\frac{(b,q/b;q)_{\infty}}{(fq/a,a/f;q)_{\infty}}\Q32{fq/ab,f,bf/a}{fq^2/d,df^2q/a^2}{q^2;q^2}\\
&=\frac{(aq^{2}/bd,dfq/ab,bdf/a,abq/d;q^2)_{\infty}(aq,f/a;q)_{\infty}}{(aq^{2}/b,fq/ab,abq,bf/a;q^2)_{\infty}(aq/d,df/a;q)_{\infty}}\\
&\qquad+\frac fa\frac{(fq^2/d,df^2q/a^2,d,a^2q/df;q^2)_{\infty}(aq,b,q/b;q)_{\infty}}{(aq^{2}/b,fq/ab,abq,bf/a;q^2)_{\infty}(aq/d,df/a,aq/f;q)_{\infty}}\\
&\qquad\cdot\Q32{fq/ab,f,bf/a}{fq^2/d,df^2q/a^2}{q^2;q^2}
\end{align}
を得る. ここで, $f=a^2q/cd$とすると
\begin{align}
&\sum_{0\leq k}\frac{1-aq^{3k}}{1-a}\frac{(a,b,q/b;q)_k(c,d,a^2q/cd;q^2)_k}{(q^2,aq^2/b,abq;q^2)_k(aq/c,aq/d,cd/a;q)_k}q^{k}\\
&\qquad-\frac{aq}{cd}\frac{(a^2q^3/cd^2,a^2q^3/c^2d,d,c;q^2)_{\infty}(aq,b,q/b;q)_{\infty}}{(aq^{2}/b,aq^2/bcd,abq,abq/cd;q^2)_{\infty}(aq/c,aq/d,cd/a;q)_{\infty}}\\
&\qquad\cdot\Q32{aq^2/bcd,a^2q/cd,abq/cd}{a^2q^3/c^2d,a^2q^3/cd^2}{q^2;q^2}\\
&=\frac{(aq^{2}/bd,aq^2/bc,abq/c,abq/d;q^2)_{\infty}(aq,aq/cd;q)_{\infty}}{(aq^{2}/b,aq^2/bcd,abq,abq/cd;q^2)_{\infty}(aq/c,aq/d;q)_{\infty}}
\end{align}
つまり, 以下を得る.
\begin{align} &\sum_{0\leq k}\frac{1-aq^{3k}}{1-a}\frac{(a,b,q/b;q)_k(c,d,a^2q/cd;q^2)_k}{(q^2,aq^2/b,abq;q^2)_k(aq/c,aq/d,cd/a;q)_k}q^{k}\\ &\qquad-\frac{aq}{cd}\frac{(a^2q^3/c^2d,a^2q^3/cd^2,c,d;q^2)_{\infty}(aq,b,q/b;q)_{\infty}}{(aq^{2}/b,aq^2/bcd,abq,abq/cd;q^2)_{\infty}(aq/c,aq/d,cd/a;q)_{\infty}}\\ &\qquad\cdot\Q32{aq^2/bcd,a^2q/cd,abq/cd}{a^2q^3/c^2d,a^2q^3/cd^2}{q^2;q^2}\\ &=\frac{(aq^2/bc,aq^{2}/bd,abq/c,abq/d;q^2)_{\infty}(aq,aq/cd;q)_{\infty}}{(aq^{2}/b,aq^2/bcd,abq,abq/cd;q^2)_{\infty}(aq/c,aq/d;q)_{\infty}} \end{align}
これは
前の記事
で示したGessel-Stantonの和公式
\begin{align}
&\sum_{k=0}^n\frac{1-aq^{3k}}{1-a}\frac{(a,b,q/b;q)_k(a/d,adq^{2n+1},q^{-2n};q^2)_k}{(dq,q^{-2n}/d,aq^{2n+1};q)_k(q^2,abq,aq^2/b;q^2)_k}q^k\\
&=\frac{(aq;q)_{2n}(bdq,dq^2/b;q^2)_n}{(dq;q)_{2n}(abq,aq^2/b;q^2)_n}
\end{align}
のnon-terminatingへの一般化を与えている.
また, 定理1において, 両辺に$(f/ac;q)_{\infty}$を掛けて$f\to ac$とすると,
\begin{align}
&\lim_{f\to ac}-\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df,f,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b,f/ac;q)_{\infty}}{(ac,fq/ac,ac/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\
&=\frac{(ac^2q^{2}/b,cq/b,abq,b/c;q^2)_{\infty}(acq/d,d;q)_{\infty}}{(ac^2q^{2}/bd,cdq/b,bd/c,abq/d;q^2)_{\infty}(acq;q)_{\infty}}\\
&\qquad\cdot\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,acq/d,ac;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,d,q;q)_k}q^{k}
\end{align}
となる. ここで, 左辺は
\begin{align}
&\lim_{f\to ac}-\frac{(ac^2q^{2}/b,bf/ac^2,fq^2/d,df^2q/a^2c^2,d,a^2c^2q/df,f,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,dfq/ab,bdf/ac^2,abq/d,cq^2,acq^2/b,f/c,bf/ac;q^2)_{\infty}}\\
&\qquad\cdot\frac{(a,b,cq/b,f/ac;q)_{\infty}}{(ac,fq/ac,ac/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\
&=\frac{(ac^2q^{2}/b,b/c,acq^2/d,dq,d,acq/d,ac,q^2;q^2)_{\infty}}{(ac^2q^{2}/bd,cdq/b,bd/c,abq/d,cq^2,acq^2/b,a,b;q^2)_{\infty}}\\
&\qquad\cdot\lim_{f\to ac}\frac{f}{ac}\frac{(a,b,cq/b;q)_{\infty}}{(ac,acq/f;q)_{\infty}}\Q32{fq/ab,f/c,bf/ac}{fq^2/d,df^2q/a^2c^2}{q^2;q^2}\\
&=\frac{(ac^2q^{2}/b,b/c,aq,bq;q^2)_{\infty}(d,acq/d,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,cdq/b,bd/c,abq/d,cq^2,acq^2/b,q,acq;q^2)_{\infty}}\\
&\qquad\cdot\Q32{cq/b,a,b}{acq^2/d,dq}{q^2;q^2}
\end{align}
となるから,
\begin{align}
&\sum_{0\leq k}\frac{1-acq^{3k}}{1-ac}\frac{(a,b,cq/b;q)_k(d,acq/d,ac;q^2)_k}{(cq^2,acq^2/b,abq;q^2)_k(acq/d,d,q;q)_k}q^{k}\\
&=\frac{(ac^2q^{2}/bd,cdq/b,bd/c,abq/d;q^2)_{\infty}(acq;q)_{\infty}}{(ac^2q^{2}/b,cq/b,abq,b/c;q^2)_{\infty}(acq/d,d;q)_{\infty}}\\
&\qquad\cdot\frac{(ac^2q^{2}/b,b/c,aq,bq;q^2)_{\infty}(d,acq/d,cq/b;q)_{\infty}}{(ac^2q^{2}/bd,cdq/b,bd/c,abq/d,cq^2,acq^2/b,q,acq;q^2)_{\infty}}\\
&\qquad\cdot\Q32{cq/b,a,b}{acq^2/d,dq}{q^2;q^2}\\
&=\frac{(aq,bq,acq^2,cq^2/b;q^2)_{\infty}}{(abq,cq^2,acq^2/b,q;q^2)_{\infty}}\Q32{cq/b,a,b}{acq^2/d,dq}{q^2;q^2}
\end{align}
となる. ここで, $c\mapsto c/a$とすると以下のようになる.
\begin{align}
&\sum_{0\leq k}\frac{1-cq^{3k}}{1-c}\frac{(a,b,cq/ab;q)_k(d,cq/d,c;q^2)_k}{(cq^2/a,cq^2/b,abq;q^2)_k(cq/d,d,q;q)_k}q^{k}\\
&=\frac{(aq,bq,cq^2,cq^2/ab;q^2)_{\infty}}{(abq,cq^2/a,cq^2/b,q;q^2)_{\infty}}\Q32{cq/ab,a,b}{cq^2/d,dq}{q^2;q^2}
\end{align}
変数を付け替えて以下の変換公式を得る.
\begin{align} &\sum_{0\leq k}\frac{1-aq^{3k}}{1-a}\frac{(b,c,aq/bc;q)_k(a,d,aq/d;q^2)_k}{(aq^2/b,aq^2/c,bcq;q^2)_k(q,aq/d,d;q)_k}q^k\\ &=\frac{(aq^2,bq,cq,aq^2/bc;q^2)_{\infty}}{(q,aq^2/b,aq^2/c,bcq;q^2)_{\infty}}\Q32{b,c,aq/bc}{dq,aq^2/d}{q^2;q^2} \end{align}
これは
前の記事
で示したGessel-Stantonの和公式
\begin{align}
&\sum_{k=0}^n\frac{1-aq^{3k}}{1-a}\frac{(q/d,adq^n,q^{-n};q)_k(a,b,aq/b;q^2)_k}{(q,b,aq/b;q)_k(adq,aq^{n+2},q^{2-n}/d;q^2)_k}q^k\\
&=\begin{cases}
\displaystyle\frac{(q,aq^2,bd,adq/b;q^2)_m}{(bq,d,adq,aq^2/b;q^2)_m}&& n=2m\\
0&& n:\mathrm{odd}
\end{cases}
\end{align}
のnon-terminatingへの一般化を与えている. 実際, 定理3において$c=q^{-n}$とすれば, 右辺はterminating balancedな${}_3\phi_2$であるから, $q$-Saalschützの和公式より総和できる.