21

メモ 1(随時更新予定)

1106
1

メモ
見つけた数式などいくつか羅列します。いつかきちんと記事に書きたい(随時更新)

(nk):=n!k!(nk)!Hn:=11+12++1nζ(s):=n=11nsη(s):=n=1(1)n1nst(s):=n=01(2n+1)sβ(s):=n=0(1)n(2n+1)sLi1(z)=log(1z)Lis+1(z)=0zLis(t)tdtLis(z)=n=1znnsk=(k1,k2,,kr)β=(β1,β2,,βr)ζ(k)=0<n1<<nr1n1k1n2k2nrkrt(k)=0<n1<<nr1(2n11)k1(2n21)k2(2nr1)krζ(k;β)=0n1<<nr1(n1+β1)k1(n2+β2)k2(nr+βr)krζ(k)=0<n1nr1n1k1n2k2nrkrt(k)=0<n1nr1(2n11)k1(2n21)k2(2nr1)krζ(k1,,ki¯,,kr)=0<n1<<nr(1)nin1k1nikinrkrt(k1,,ki¯,,kr)=0<n1<<nr(1)ni(2n11)k1(2ni1)ki(2nr1)kr

○○進法と無限積
n=02n1+22n=1n=022n+2n(1+22n)2=2n=022n+3n(22n1)(22n+1)3=6n=022n+4n(22n+1422n+1)(22n+1)4=26

k=(k1,k2,,kr)ζ(k)=(1)r0<m1,m2,,mr0n1,n2,,nr(1)m1+m2++mr2n1+n2++nr(m12n1)k1(m12n1+m22n2)k2(m12n1+m22n2++mr2nr)kr

eπeπ2π=exp(ζ(2)1ζ(4)2+ζ(6)3ζ(8)4+)eπ2+eπ2π=exp(η(2)1ζ(4)2+η(6)3ζ(8)4+)eπ2+eπ22=exp(t(2)1t(4)2+t(6)3t(8)4+)

級数botⅡの問題
n=01n+12(2nn)24n=2π3n=01(n+12)3(2nn)24n=7π327

sin(n=1(1)n1ζ(4n2)2n1z4n2)=sin(π2z)cosh(π2z)cos(π2z)sinh(π2z)cosh(2πz)cos(2πz)cos(n=1(1)n1ζ(4n2)2n1z4n2)=sin(π2z)cosh(π2z)+cos(π2z)sinh(π2z)cosh(2πz)cos(2πz)sin(n=1(1)n1t(4n2)2n1z4n2)=2sin(24πz)sinh(24πz)cos(π2z)+cosh(π2z)cos(n=1(1)n1t(4n2)2n1z4n2)=2cos(24πz)cosh(24πz)cos(π2z)+cosh(π2z)sin(n=1(1)n1η(4n2)2n1z4n2)=2xsinh(24πz)cosh(24πz)sin(24πz)cos(24πz)cosh(2πz)cos(2πz)cos(n=1(1)n1η(4n2)2n1z4n2)=2xsinh(24πz)cosh(24πz)+sin(24πz)cos(24πz)cosh(2πz)cos(2πz)

ζ({2}r)=0<n1<<nr1n12n22nr2=π2r(2r+1)!ζ({4}r)=0<n1<<nr1n14n24nr4=22r+1π4r(4r+2)!ζ({6}r)=0<n1<<nr1n16n26nr6=626rπ6r(6r+3)!ζ({8}r)=0<n1<<nr1n18n28nr8=24r+1π8r(8r+4)!{(2+2)4r+2+(22)4r+2}ζ({10}r)=0<n1<<nr1n110n210nr10=10210rπ10r(10r+5)!(1+L10r+5)(Lnn)

ζ({2m}r)=0<n1<<nr1n12mn22mnr2m=(i)m+12m1(1)(m+1)rπ2mr(2mr+m)!(eiπm±e2iπm±±emiπm)2mr+m

ζ({2m}r)の式にあるについて

f(k1±k2±±kn)
で表される2n1個の数の総和を
f(k1±k2±±kn)

(例)
f(A±B±C)=f(A+B+C)+f(A+BC)+f(AB+C)+f(ABC)
また、各項について±の部分で-を選んだ回数をMで表して
f(k1±k2±±kn):=f(k1±k2±±kn)(1)M

t({2}r)=0<n1<<nr1(2n11)2(2n21)2(2nr1)2=π2r22r(2r)!t({4}r)=0<n1<<nr1(2n11)4(2n21)4(2nr1)4=π4r22r(4r)!t({6}r)=0<n1<<nr1(2n11)6(2n21)6(2nr1)6=3π6r4(6r)!

気に入っている積分1
01Li2(1+x2)π212+12(log2)2xdx=138ζ(3)π26log2

Ω(n):nω(n):nA(n):nt(s):=n=11(2n1)snn=p1α1p2α2pω(n)αω(n)Y(n):=k=1ω(n)αk(Y(1)=1)σa(n):na()n=1(1)Ω(n)ns=ζ(2s)ζ(s)n=12ω(n)ns=ζ(s)2ζ(2s)n=1(1)A(n)ns=2s2s1t(2s)t(s)n=1σa(n)(1)Ω(n)ns=ζ(2s)ζ(2s2a)ζ(s)ζ(sa)n=1Y(n2)ns=ζ(s)2ζ(2s)ζ(4s)n=1Y(n4)ns=ζ(s)4ζ(2s)2(n=1Y(n)ns)(n=1Y(n3)ns)=ζ(s)4ζ(2s)ζ(6s)n=1σa(n)ns=ζ(s)ζ(sa)n=1σa(n)σb(n)ns=ζ(s)ζ(sa)ζ(sb)ζ(sab)ζ(2sab)n=0(1)nσa(2n+1)(2n+1)s=β(s)β(sa)n=0(1)nσa(2n+1)σb(2n+1)(2n+1)s=β(s)β(sa)β(sb)β(sab)t(2sab)0<n1<n2σa(n1)σa(n2)n1sn2s=12{(ζ(s)ζ(sa))2ζ(2s)ζ(2sa)2ζ(2s2a)ζ(4s2a)}

0<n1<n2<n31(2n11)(2n21)(2n31)5n3n2=120ζ(3)

t({1¯}r)=0<n1<<nr(1)n1+n2++nr(2n11)(2n21)(2nr1)=(1)[1+r2]πr22rr!t({3¯}r)=0<n1<<nr(1)n1+n2++nr(2n11)3(2n21)3(2nr1)3=3π3r23r+1(3r)!(1)[1+r2]

ζ({2¯}r)=0<n1<<nr(1)n1+n2++nrn12n22nr2=(1)[1+r2]π2r2r(2r+1)!ζ({4¯}r)=0<n1<<nr(1)n1+n2++nrn14n24nr4=(1)[1+r2]π4r2r(4r+2)!((2+1)2r+1(21)2r+1)

コネクターと級数
許容インデックスk=(k1,k2,,kr)に対して
U(k):=0<n1<n2<<nrnr(n112)k1(n212)k2(nr12)kr(2nrnr)22nr
とするとU(k)は双対性を持つ。すなわち、
kの双対インデックスkに対し
U(k)=U(k)
が成り立つ。

多重ゼータ値の双対性2
コネクターと級数
k=(k1,k2,,kr)(a)n:,α=({α}dep(k))0<n1<<nr22nrn1k1n2k2nrkr(2nrnr)=2wt(k)t(k)0<n1<<nrnr!n1k1n2k2nrkr(α)nr=ζ(k;α)

k=(k1,k2,,kr)ς(k):=0n1<n2<<nr1(n1+12)k1(n2+12)k2(nr+12)kr(2nrnr)22nrk:=((k))ς(k)=ς(k)

コネクターと級数
n=1m=11(n12)(m12)n!m!(n+m1)!(2nn)(2mm)22n+2m=πn=1m=11(n12)2(m12)2n!m!(n+m1)!(2nn)(2mm)22n+2m=π36

0<n1<n2<<nrnr(n112)2(n212)2(nr12)2(2nn)22n=π2r1(2r1)!

M:=M(n1,n2,,n2r)=k=12rnk(1)k=n2rn2r1++n2n10<n1<<n2r(1)M(n112)(n212)(n2r12)3M=(1)rπ2r32r(2r)!0<n1<<n2r1(n112)(n212)(n2r12)2M=22r(2r)!(log(1+2))2r0<n1<<n2r1(n112)(n212)(n2r12)3M=22r(2r)!(log(2+62))2r0<n1<<n2r1(n112)(n212)(n2r12)5M=22r(2r)!(log(ϕ))2r

M:=M(n1,n2,,n2r1)=k=12r1nk(1)k+1=n2r1n2r2++n10<n1<<n2r1(1)M(n112)(n212)(n2r112)3M=13(1)rπ2r132r1(2r1)!0<n1<<n2r11(n112)(n212)(n2r112)2M=22r1(2r1)!(log(1+2))2r120<n1<<n2r11(n112)(n212)(n2r112)3M=22r1(2r1)!(log(2+62))2r130<n1<<n2r11(n112)(n212)(n2r112)5M=22r1(2r1)!(log(ϕ))2r15

0n<m1m(n+m)(2m+4nm+2n)(2mm)26n(2mm)=π36Γ(34)40n<m<l22lm(n+m)(l+2n)(l+3n)(2m+4nm+2n)(2l+4nl+2n)(2mm)=π524Γ(34)4

n1=1n2=1n3=1(n11)!(n21)!(n31)!(n1+n2+n3)!=n=1m=11n+m(n1)!(m1)!(n+m)!0<n1,n2,,nr(n11)!(n21)!(nr1)!(n1+n2++nr)!=0<n1,n2,,nr11n1+n2++nr1(n11)!(n21)!(nr11)!(n1+n2++nr1)!0<n1.n2.n3n1!n2!n3!(n1+n2+n3)!(2n1n1)(2n2n2)(2n3n3)(2n1+2n2+2n3n1+n2+n3)n1+n2+n312(n112)(n212)(n312)=0<n,mn!m!(n+m)!(2nn)(2mm)(2n+2mn+m)n+m12(n12)(m12)(n+m1)

AMZVメモ
ζ(1¯)=ln2ζ(1¯,1¯)=12ln2212ζ(2)ζ(1¯,1¯,1¯)=16ln32+π212ln214ζ(3)ζ(1¯,1¯,1¯,1¯)=124ln42π224ln22+516ζ(3)ln2+π41440ζ(1,1¯,1,1¯)=124ln42+π4720532ζ(3)ln2

n<m(n,m)(Z{0})21n3m3=ζ(6)n<m(n,m)(Z{0})21n2m4=π6378

n1<n2<<nr(n1,n2,,nr)(Z{0})r1n12n22nr2=22r+1(2r+2)!π2rn1<n2<<nr(n1,n2,,nr)(Z{0})r1n14n24nr4=26r+4+24r+3(1)r(4r+4)!π4r

n1<n2<<n2r1(n1,n2,,n2r1)(Z{0})2r1(1)n1+n2++n2r1n12n22n2r12=(1)r22rπ4r2(4r)!n1<n2<<n2r(n1,n2,,n2r)(Z{0})2r(1)n1+n2++n2rn12n22n2r2=2π4r(4r+2)!

n1<n2<<nr(n1,n2,,nr)Zr1(n1+12)2(n2+12)2(nr+12)2=22r1(2r)!π2rn1<n2<<nr(n1,n2,,nr)Zr1(n1+12)4(n2+12)4(nr+12)4=26r2+24r1(1)r(4r)!π4r

12cosπ4(1x)=1sinπx4+cosπx4=1+a1x+a2x2+a3x3+an=wt(k)=nt(k)k1¯,2,3¯,4,で構成されるインデックス

0n11(2n1+1)(2n1n1)224n1=4πβ(2)0n1<n21(2n1+1)2(2n2+1)(2n2n2)224n2=π2β(2)4πβ(4)0n1<n2<n31(2n1+1)2(2n2+1)2(2n3+1)(2n3n3)224n3=π396β(2)π2β(4)+4πβ(6)
0n1<<nr+11(2n1+1)2(2nr+1)2(2nr+1+1)(2nr+1nr+1)224nr+1=4πk=0rβ(2k+2)(1)kπ2r2k22r2k(2r2k)!

n=0(1)n(2nn)5(4n+1)210n=2Γ(34)4

140<n22nn4(2nn)+20n<m1(2n+1)3(2m)(2m+1)=π24ln22

0<n22nn3(2nn)=30<n22nn3(n!)3(3n)!+20<n<m22nnm2(2nn)(2m)!n!(2m+n)!=π2ln272ζ(3)

(n!m!/(n+m)!)²が含まれる級数
ζ(2)=n=1m=11n2(n!m!(n+m)!)2+2n=1m=11nm(n!m!(n+m)!)2

ζ(3)=n=1m=11nm2n!m!(n+m)!=3n=1m=11nm2(n!m!(n+m)!)2ζ(3)=60<n1<n20<m1n1n2m(n2!m!(n2+m)!)2+30<n1<n20<m1n1n22(n2!m!(n2+m)!)2ζ(3)=20<n1<n20<m1n1n2m(n2!m!(n2+m)!)2+0<n1<n20<m1n1m2(n2!m!(n2+m)!)2

ζ(3)+0<n0<m1n3(n!m!(n+m)!)2=20<n0<m1n2(n!m!(n+m)!)2+0<n0<m1nm(n!m!(n+m)!)2

112k132k152k+172k+192k1112k1132k+=π22t({1¯}2k1)112k+1+132k+1152k+1172k+1+=π22t({1¯}2k)

ζ({3}k)=3π4n=01(2n+1)3k1(2nn)24nm=n+11(1+3(2n+1)2(2m+1)2)38n=11n3k(2nn)m=n+11(1+3n2m2)

π2=n=012n+1(2nn)(4n+42n+2)(3n+2n)26n+4+n=014n+1(2nn)(4n2n)(3nn)26n+n=014n+3(2nn)(4n+22n+1)(3n+1n)26n+2

0n(1(2n+1)3(3n+1n)H2nHn(2n+1)2(3n+1n))=0<n(2n3(3nn)+74H2nHnn2(3nn))

n=0tanh((n+12)π)(n+12)3=π34
n=0tanh((n+12)π)(n+12)7=7π7180

2π2log22=0<n1<n2<n3(2n1n1)n122n11n222n3n32(2n3n3)+20<n1<n2<n31n1(2n2n2)n222n222n3n32(2n3n3)
14ζ(1,3)16t(1,3)=0<n1<n2<n31n122n2n22(2n2n2)(2n3n3)n322n3+20<n1<n2n31n122n2n22(2n2n2)(1)n2+n3n2+n3
14ζ(3)=0<nm1(n12)22mm2(2mm)
16t(1,3)=0<n1<n2n3(2n1n1)n122n11n21222n3n32(2n3n3)0<n1<n2<n3(2n1n1)n122n11n222n3n32(2n3n3)

n=1m=122nn2(2nn)22mm2(2mm)n!m!(n+m)!=π424
0<n<m(2nn)n222n22mm2(2mm)=0<n<m22nn2(2nn)1m2

Ξ(k1,k2,,kr):=0<n1<<nr1n1k1nr1kr1nrkr(a)nr1nr1!nr!(a)nr
特にr=1のとき,Ξ(k):=n=1n!nk(a)n
重さk深さrの許容インデックス全体がなす集合をIr(k,r)とする。このとき次が成立する。(多重ゼータ値の和公式の一般化)
Ξ(k)=kIr(k,r)Ξ(k)

log2に収束する級数
log2=n=11(2n1)2(2nn)(4n2n)+n=11n(2n1)(2nn)(4n2n)

log2=n=11(2n)224n(4n2n)(2nn)+n=11n(2n1)24n(4n2n)(2nn)
一般化

n=112n(2n2x1)=n=11(2n2x1)2(12x)2n2(1x)2n(12x)4n(1x)n2+n=11n(2n2x1)(12x)2n2(1x)2n(12x)4n(1x)n2

n=112n(2n2x1)=n=11(2n)2(12x)2n2(1x)2nn!2(12x)4n(1x)n2(12x)n2+n=11n(2n2x1)(12x)2n2(1x)2nn!2(12x)4n(1x)n2(12x)n2

任意の正整数の組(n,m)について次が成立する。
n<k1k(k12)(2kk)(2mm)(2k+2mk+m)n<k1k(k12)(2kk)22k=m<k1k(k12)(2kk)(2nn)(2k+2nk+n)m<k1k(k12)(2kk)22k

22a(2aa)an1nr1n1(n1+12)nr(nr+12)(2nrnr)22nr=0<n1n2<<n2r1n2r1n122n1(2nrnr)1n2+12(2n2n2)22n21n2r122n2r1(2n2r1n2r1)1n2r+12(2n2rn2r)22n2rn2r!a!(n2r+a)!

βn:=(2nn)22n
0n<n1<<nrβn31n13nr3βnr3=0n<n1<<n2r1βn31n12βn1βn2n21n2r32βn2r3βn2r2n2r21n2r13βn2r13

k:Hoffman双対インデックス
HN(k;x):=1n1naN1(n1x)k1(nax)ka(1)na1(1x)N(1x)na(Nna)!GN(k;x):=1n1naN1(n1x)k1(nax)ka(1x)n11(n11)!
このとき,次が成立する.
HN(k;x)=GN(k;x)

k=(k1,,kr):許容インデックス
ϵ=(ϵ1,,ϵr){0,1}r
νa,b(ϵk):=0=n0<n1<<nri=1r1niki(ni2ni2a2(1b)ni1ni1!ni1!2(1a)ni1(1+a)ni1ni!(1b)ni(1a)ni(1+a)nini!2)ϵi
このとき,正整数a1,,as,b1,,bs(ϵ1,,ϵr){0,1}rについて次が成立する。
νa,b({0}a11,ϵ1,,{0}as1,ϵs{1}a11,b1+1,,{1}as1,bs+1)=νa,b({0}bs1,ϵs,,{0}b11,ϵ1{1}bs1,as+1,,{1}b11,a1+1)

k:=((k))
ζα,β,γ,δ(k):=Γ(β)Γ(α+γ)Γ(α+β+γ)0n1<<nr(1δ)n1n1!1(n1+γ)k1(nr+γ)kr(α+γ)nr(α+β+γ)nr
このとき
ζα,β,γ,δ(k)=ζδ,γ,β,α(k)

π=0<k3k1k(k12)22k(4k2k)

0mn(2mm)224m1(2n+1)2=72πζ(3)
0mn(2mm)224m1(2n+1)3=4πβ(2)2

n=0(2nn)2(4n2n)28n=2n=0(1)n(2nn)326n=πΓ(58)2Γ(78)2

π316n=0(4n+1)(2nn)6212n=n=0(2nn)428n(2β(2)+m=1n24m(2m)2(2mm)2)

n=126nn3(2nn)3(m=0n1(2mm)326m)(k=0n1(2kk)224k)=π52Γ(34)8

n=1(2nn)326nm=1n26mm3(2mm)3+2πΓ(34)4n=1(2nn)326nm=1n22mm2(2mm)=π63Γ(34)8π4Γ(34)8

n=126nn3(2nn)3(m=0n1(2mm)224m)2πn=1(2nn)326nm=1n22mm2(2mm)=8π2Γ(34)4β(2)

n=1(1)n126n(2n)3(2nn)3m=0n1(2mm)224m=n=1(1)n22n(2n)2(2nn)m=0n1(1)m(2nn)326n2log(1+2)n=1(1)n22n(2n)(2nn)m=0n1(1)m(2nn)326n

7ζ(3)=0n1<n21n1+123n21n2324n2(2n2n2)30<n1n324n(2nn)3

π46=0n1<n21(n1+12)23n21n2324n2(2n2n2)340<n1<n21n123n21n2324n2(2n2n2)3

π46=0<m<n1m24nn3(2nn)2+0<m<n(2mm)m23n1n324n(2nn)3+30<n1<n2<n31n1(2n2n2)n23n31n3324n3(2n3n3)3

A(n):=sin(π4+nπ2)
B(n):=cos(π4+nπ2)
t(k1,,ki¯,,kr):=0n1nr(1)ni(2n1+1)k1(2nr+1)kr
ζ(k1,,ki¯,,kr):=0<n1nr(1)ni1n1k1nrkr

π4t({1¯}2k1)=n=0B(n)(2n+1)2k
π4t({1¯}2k)=n=0A(n)(2n+1)2k+1

π12t({3¯}2k1)=n=0B(n)(2n+1)6k21cosh(3π4(2n+1))+B(n)
π12t({3¯}2k)=n=0A(n)(2n+1)6k+11cosh(3π4(2n+1))+B(n)

βn:=(2nn)22n
ζ({1¯}2k1)=n=12B(n1)n2k1β[n2]
ζ({1¯}2k)=n=12A(n1)n2kβ[n2]

n=048n2+32n+3n+12(2nn)(4n2n)2212n=162π
0n1701n4+2754n3+1566n2+351n+22(n+12)3(3nn)339n=3243π
0k5376k4+8704k3+4896k2+1056k+57(k+12)3(4k2k)3218k=10242π

ζ(2)=20<n1n2(2nn)20<n<m(2nn)21m8m3(2mm)3+230<nsin(πn3)n2
ζ(3)=920<n1n3(2nn)2+320<m<n(2mm)m21n8n3(2nn)3

0<n(1n3n(2nn)n<m1m2(2mm))=8330<nsin(πn3)n20<n(1n23(2nn)n<m1m2(2mm))=π2312330<nsin(πn3)n2

0m<n24m(m+12)2(2mm)(2nn)(n+12)24n=169πβ(2)359ζ(3)

643πβ(2)=0<mn1m(m12)24m(2mm)(6n+1)(2nn)328n
40963πβ(2)=240n1n+12(2nn)228n+0<mn1m(m12)24m(2mm)(42n+5)(2nn)3212n

π=0n1n+12(2nn)328n+0m<n1(m+12)2(6n+1)(2nn)328n83π=40n1n+12(2nn)3212n+0m<n1(m+12)2(42n+5)(2nn)3212n

πΓ(14)4=121030n(1)n28672n514848n4+1600n3+32n28n1(n14)3133n(14)n2(712)n(1112)n(4n2n)3212n
πΓ(34)4=1210330n(1)n28672n5+56832n4+43584n3+16000n2+2760n+171(n+12)3(n+112)(n+512)133n(34)n2(112)n(512)n(4n2n)3212n

01(xx)(xx)(xx)dx=π2601(xx)(xx)(xx)dx=π21201(x12x)(x12x)(x12x)dx=π26(log2)201(xαx)(xαx)(xαx)dx=1αLi2(α)

0101(xyx)(xyx)(xyx)dxdy=ζ(3)

132πΓ(58)2Γ(78)2=0m<n1m+12(1)n(2n+12)(2nn)326n
π6=0m<n1(m+12)2(1)n(2n+12)(2nn)326n+0m<n1m+12(1)n(2nn)326n+30n1<n2<n31(n1+12)(n2+12)(1)n3(2n3+12)(2n3n3)326n3

13ζ(2,3)=20<n1<n2(2n1n1)n13n22(2n2n2)30<n1<n2<n3(2n2n2)n12n2n32(2n3n3)

8πβ(2)64πβ(4)=20n1<n224n1(n1+12)4(2n1n1)(6n2+1)(2n2n2)328n230n1<n2<n31(n1+12)224n2(n2+12)2(2n2n2)(6n3+1)(2n3n3)328n3

投稿日:202381
更新日:21
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

余余余
余余余
222
14102
よよよよよよよよよよよよ

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中