メモ見つけた数式などいくつか羅列します。いつかきちんと記事に書きたい(随時更新)
(nk):=n!k!(n−k)!Hn:=11+12+⋯+1nζ(s):=∑n=1∞1nsη(s):=∑n=1∞(−1)n−1nst(s):=∑n=0∞1(2n+1)sβ(s):=∑n=0∞(−1)n(2n+1)sLi1(z)=−log(1−z)Lis+1(z)=∫0zLis(t)tdtLis(z)=∑n=1∞znnsk=(k1,k2,⋯,kr)β=(β1,β2,⋯,βr)ζ(k)=∑0<n1<⋯<nr1n1k1n2k2⋯nrkrt(k)=∑0<n1<⋯<nr1(2n1−1)k1(2n2−1)k2⋯(2nr−1)krζ(k;β)=∑0≤n1<⋯<nr1(n1+β1)k1(n2+β2)k2⋯(nr+βr)krζ⋆(k)=∑0<n1≤⋯≤nr1n1k1n2k2⋯nrkrt⋆(k)=∑0<n1≤⋯≤nr1(2n1−1)k1(2n2−1)k2⋯(2nr−1)krζ(k1,⋯,ki¯,⋯,kr)=∑0<n1<⋯<nr(−1)nin1k1⋯niki⋯nrkrt(k1,⋯,ki¯,⋯,kr)=∑0<n1<⋯<nr(−1)ni(2n1−1)k1⋯(2ni−1)ki⋯(2nr−1)kr
○○進法と無限積 ∑n=0∞2n1+22n=1∑n=0∞22n+2n(1+22n)2=2∑n=0∞22n+3n(22n−1)(22n+1)3=6∑n=0∞22n+4n(22n+1−4⋅22n+1)(22n+1)4=26
k=(k1,k2,⋯,kr)ζ(k)=(−1)r∑0<m1,m2,⋯,mr0≤n1,n2,⋯,nr(−1)m1+m2+⋯+mr2n1+n2+⋯+nr(m12n1)k1(m12n1+m22n2)k2⋯(m12n1+m22n2+⋯+mr2nr)kr
eπ−e−π2π=exp(ζ(2)1−ζ(4)2+ζ(6)3−ζ(8)4+⋯)eπ2+e−π2π=exp(η(2)1−ζ(4)2+η(6)3−ζ(8)4+⋯)eπ2+e−π22=exp(t(2)1−t(4)2+t(6)3−t(8)4+⋯)
級数botⅡの問題 ∑n=0∞1n+12(2nn)24n=2π3∑n=0∞1(n+12)3(2nn)24n=7π327
sin(∑n=1∞(−1)n−1ζ(4n−2)2n−1z4n−2)=sin(π2z)cosh(π2z)−cos(π2z)sinh(π2z)cosh(2πz)−cos(2πz)cos(∑n=1∞(−1)n−1ζ(4n−2)2n−1z4n−2)=sin(π2z)cosh(π2z)+cos(π2z)sinh(π2z)cosh(2πz)−cos(2πz)sin(∑n=1∞(−1)n−1t(4n−2)2n−1z4n−2)=2sin(24πz)sinh(24πz)cos(π2z)+cosh(π2z)cos(∑n=1∞(−1)n−1t(4n−2)2n−1z4n−2)=2cos(24πz)cosh(24πz)cos(π2z)+cosh(π2z)sin(∑n=1∞(−1)n−1η(4n−2)2n−1z4n−2)=2xsinh(24πz)cosh(24πz)−sin(24πz)cos(24πz)cosh(2πz)−cos(2πz)cos(∑n=1∞(−1)n−1η(4n−2)2n−1z4n−2)=2xsinh(24πz)cosh(24πz)+sin(24πz)cos(24πz)cosh(2πz)−cos(2πz)
は番目のリュカ数ζ({2}r)=∑0<n1<⋯<nr1n12n22⋯nr2=π2r(2r+1)!ζ({4}r)=∑0<n1<⋯<nr1n14n24⋯nr4=22r+1π4r(4r+2)!ζ({6}r)=∑0<n1<⋯<nr1n16n26⋯nr6=6⋅26rπ6r(6r+3)!ζ({8}r)=∑0<n1<⋯<nr1n18n28⋯nr8=24r+1π8r(8r+4)!{(2+2)4r+2+(2−2)4r+2}ζ({10}r)=∑0<n1<⋯<nr1n110n210⋯nr10=10⋅210rπ10r(10r+5)!(1+L10r+5)(Lnはn番目のリュカ数)
ζ({2m}r)=∑0<n1<⋯<nr1n12mn22m⋯nr2m=(−i)m+12m−1(−1)(m+1)rπ2mr(2mr+m)!∑―(eiπm±e2iπm±⋯±emiπm)2mr+m
f(k1±k2±⋯±kn)で表される2n−1個の数の総和をと書くこととする。∑f(k1±k2±⋯±kn)と書くこととする。
(例)∑f(A±B±C)=f(A+B+C)+f(A+B−C)+f(A−B+C)+f(A−B−C)また、各項について±の部分で-を選んだ回数をMで表して∑―f(k1±k2±⋯±kn):=∑f(k1±k2±⋯±kn)(−1)M
t({2}r)=∑0<n1<⋯<nr1(2n1−1)2(2n2−1)2⋯(2nr−1)2=π2r22r(2r)!t({4}r)=∑0<n1<⋯<nr1(2n1−1)4(2n2−1)4⋯(2nr−1)4=π4r22r(4r)!t({6}r)=∑0<n1<⋯<nr1(2n1−1)6(2n2−1)6⋯(2nr−1)6=3π6r4(6r)!
気に入っている積分1 ∫01Li2(1+x2)−π212+12(log2)2xdx=138ζ(3)−π26log2
の重複を含めた素因数の個数の重複を含めない素因数の個数の重複を含めた素因数の和正の整数とその素因数分解に対し、ただしの約数の乗和約数関数Ω(n):nの重複を含めた素因数の個数ω(n):nの重複を含めない素因数の個数A(n):nの重複を含めた素因数の和t(s):=∑n=1∞1(2n−1)s正の整数nとその素因数分解n=p1α1p2α2⋯pω(n)αω(n)に対し、Y(n):=∏k=1ω(n)αk(ただしY(1)=1)σa(n):nの約数のa乗和(約数関数)∑n=1∞(−1)Ω(n)ns=ζ(2s)ζ(s)∑n=1∞2ω(n)ns=ζ(s)2ζ(2s)∑n=1∞(−1)A(n)ns=2s2s−1t(2s)t(s)∑n=1∞σa(n)(−1)Ω(n)ns=ζ(2s)ζ(2s−2a)ζ(s)ζ(s−a)∑n=1∞Y(n2)ns=ζ(s)2ζ(2s)ζ(4s)∑n=1∞Y(n4)ns=ζ(s)4ζ(2s)2(∑n=1∞Y(n)ns)(∑n=1∞Y(n3)ns)=ζ(s)4ζ(2s)ζ(6s)∑n=1∞σa(n)ns=ζ(s)ζ(s−a)∑n=1∞σa(n)σb(n)ns=ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)ζ(2s−a−b)∑n=0∞(−1)nσa(2n+1)(2n+1)s=β(s)β(s−a)∑n=0∞(−1)nσa(2n+1)σb(2n+1)(2n+1)s=β(s)β(s−a)β(s−b)β(s−a−b)t(2s−a−b)∑0<n1<n2σa(n1)σa(n2)n1sn2s=12{(ζ(s)ζ(s−a))2−ζ(2s)ζ(2s−a)2ζ(2s−2a)ζ(4s−2a)}
∑0<n1<n2<n31(2n1−1)(2n2−1)(2n3−1)5n3−n2=120ζ(3)
t({1¯}r)=∑0<n1<⋯<nr(−1)n1+n2+⋯+nr(2n1−1)(2n2−1)⋯(2nr−1)=(−1)[1+r2]πr22rr!t({3¯}r)=∑0<n1<⋯<nr(−1)n1+n2+⋯+nr(2n1−1)3(2n2−1)3⋯(2nr−1)3=3π3r23r+1(3r)!(−1)[1+r2]
ζ({2¯}r)=∑0<n1<⋯<nr(−1)n1+n2+⋯+nrn12n22⋯nr2=(−1)[1+r2]π2r2r(2r+1)!ζ({4¯}r)=∑0<n1<⋯<nr(−1)n1+n2+⋯+nrn14n24⋯nr4=(−1)[1+r2]π4r2r(4r+2)!((2+1)2r+1−(2−1)2r+1)
コネクターと級数 許容インデックスk=(k1,k2,⋯,kr)に対してU(k):=∑0<n1<n2<⋯<nrnr(n1−12)k1(n2−12)k2⋯(nr−12)kr(2nrnr)22nrとするとU(k)は双対性を持つ。すなわち、kの双対インデックスk†に対しU(k)=U(k†)が成り立つ。
多重ゼータ値の双対性2 コネクターと級数 ポッホハマー記号k=(k1,k2,⋯,kr)(a)n:ポッホハマー記号,α=({α}dep(k†))∑0<n1<⋯<nr22nrn1k1n2k2⋯nrkr(2nrnr)=2wt(k)t(k†)∑0<n1<⋯<nrnr!n1k1n2k2⋯nrkr(α)nr=ζ(k†;α)
に対してとするとが成り立つk=(k1,k2,⋯,kr)に対してς(k):=∑0≤n1<n2<⋯<nr1(n1+12)k1(n2+12)k2⋯(nr+12)kr(2nrnr)22nrk′:=((k↑)†)↓とするとς(k)=ς(k′)が成り立つ
コネクターと級数 ∑n=1∞∑m=1∞1(n−12)(m−12)n!m!(n+m−1)!(2nn)(2mm)22n+2m=π∑n=1∞∑m=1∞1(n−12)2(m−12)2n!m!(n+m−1)!(2nn)(2mm)22n+2m=π36
∑0<n1<n2<⋯<nrnr(n1−12)2(n2−12)2⋯(nr−12)2(2nn)22n=π2r−1(2r−1)!
M:=M(n1,n2,⋯,n2r)=∑k=12rnk(−1)k=n2r−n2r−1+⋯+n2−n1∑0<n1<⋯<n2r(−1)M(n1−12)(n2−12)⋯(n2r−12)⋅3M=(−1)rπ2r32r(2r)!∑0<n1<⋯<n2r1(n1−12)(n2−12)⋯(n2r−12)2M=22r(2r)!(log(1+2))2r∑0<n1<⋯<n2r1(n1−12)(n2−12)⋯(n2r−12)3M=22r(2r)!(log(2+62))2r∑0<n1<⋯<n2r1(n1−12)(n2−12)⋯(n2r−12)5M=22r(2r)!(log(ϕ))2r
M′:=M′(n1,n2,⋯,n2r−1)=∑k=12r−1nk(−1)k+1=n2r−1−n2r−2+⋯+n1∑0<n1<⋯<n2r−1(−1)M′(n1−12)(n2−12)⋯(n2r−1−12)3M′=13(−1)rπ2r−132r−1(2r−1)!∑0<n1<⋯<n2r−11(n1−12)(n2−12)⋯(n2r−1−12)2M′=22r−1(2r−1)!(log(1+2))2r−12∑0<n1<⋯<n2r−11(n1−12)(n2−12)⋯(n2r−1−12)3M′=22r−1(2r−1)!(log(2+62))2r−13∑0<n1<⋯<n2r−11(n1−12)(n2−12)⋯(n2r−1−12)5M′=22r−1(2r−1)!(log(ϕ))2r−15
∑0≤n<m1m(n+m)(2m+4nm+2n)(2mm)26n(2mm)=π36Γ(34)4∑0≤n<m<l22lm(n+m)(l+2n)(l+3n)(2m+4nm+2n)(2l+4nl+2n)(2mm)=π524Γ(34)4
∑n1=1∞∑n2=1∞∑n3=1∞(n1−1)!(n2−1)!(n3−1)!(n1+n2+n3)!=∑n=1∞∑m=1∞1n+m(n−1)!(m−1)!(n+m)!∑0<n1,n2,⋯,nr(n1−1)!(n2−1)!⋯(nr−1)!(n1+n2+⋯+nr)!=∑0<n1,n2,⋯,nr−11n1+n2+⋯+nr−1(n1−1)!(n2−1)!⋯(nr−1−1)!(n1+n2+⋯+nr−1)!∑0<n1.n2.n3n1!n2!n3!(n1+n2+n3)!(2n1n1)(2n2n2)(2n3n3)(2n1+2n2+2n3n1+n2+n3)n1+n2+n3−12(n1−12)(n2−12)(n3−12)=∑0<n,mn!m!(n+m)!(2nn)(2mm)(2n+2mn+m)n+m−12(n−12)(m−12)(n+m−1)
AMZVメモ ζ(1¯)=−ln2ζ(1¯,1¯)=12ln22−12ζ(2)ζ(1¯,1¯,1¯)=−16ln32+π212ln2−14ζ(3)ζ(1¯,1¯,1¯,1¯)=124ln42−π224ln22+516ζ(3)ln2+π41440ζ(1,1¯,1,1¯)=124ln42+π4720−532ζ(3)ln2
∑n<m(n,m)∈(Z∖{0})21n3m3=−ζ(6)∑n<m(n,m)∈(Z∖{0})21n2m4=π6378
∑n1<n2<⋯<nr(n1,n2,⋯,nr)∈(Z∖{0})r1n12n22⋯nr2=22r+1(2r+2)!π2r∑n1<n2<⋯<nr(n1,n2,⋯,nr)∈(Z∖{0})r1n14n24⋯nr4=26r+4+24r+3(−1)r(4r+4)!π4r
∑n1<n2<⋯<n2r−1(n1,n2,⋯,n2r−1)∈(Z∖{0})2r−1(−1)n1+n2+⋯+n2r−1n12n22⋯n2r−12=(−1)r22rπ4r−2(4r)!∑n1<n2<⋯<n2r(n1,n2,⋯,n2r)∈(Z∖{0})2r(−1)n1+n2+⋯+n2rn12n22⋯n2r2=2π4r(4r+2)!
∑n1<n2<⋯<nr(n1,n2,⋯,nr)∈Zr1(n1+12)2(n2+12)2⋯(nr+12)2=22r−1(2r)!π2r∑n1<n2<⋯<nr(n1,n2,⋯,nr)∈Zr1(n1+12)4(n2+12)4⋯(nr+12)4=26r−2+24r−1(−1)r(4r)!π4r
はで構成されるインデックス12cosπ4(1−x)=1sinπx4+cosπx4=1+a1x+a2x2+a3x3+⋯an=∑wt(k)=nt(k)kは1¯,2,3¯,4,⋯で構成されるインデックス
∑0≤n11(2n1+1)(2n1n1)224n1=4πβ(2)∑0≤n1<n21(2n1+1)2(2n2+1)(2n2n2)224n2=π2β(2)−4πβ(4)∑0≤n1<n2<n31(2n1+1)2(2n2+1)2(2n3+1)(2n3n3)224n3=π396β(2)−π2β(4)+4πβ(6)∑0≤n1<⋯<nr+11(2n1+1)2⋯(2nr+1)2(2nr+1+1)(2nr+1nr+1)224nr+1=4π∑k=0rβ(2k+2)(−1)kπ2r−2k22r−2k(2r−2k)!
∑n=0∞(−1)n(2nn)5(4n+1)210n=2Γ(34)4
14∑0<n22nn4(2nn)+2∑0≤n<m1(2n+1)3(2m)(2m+1)=π24ln22
∑0<n22nn3(2nn)=3∑0<n22nn3(n!)3(3n)!+2∑0<n<m22nnm2(2nn)(2m)!n!(2m+n)!=π2ln2−72ζ(3)
(n!m!/(n+m)!)²が含まれる級数 ζ(2)=∑n=1∞∑m=1∞1n2(n!m!(n+m)!)2+2∑n=1∞∑m=1∞1nm(n!m!(n+m)!)2
ζ(3)=∑n=1∞∑m=1∞1nm2n!m!(n+m)!=3∑n=1∞∑m=1∞1nm2(n!m!(n+m)!)2ζ(3)=6∑0<n1<n20<m1n1n2m(n2!m!(n2+m)!)2+3∑0<n1<n20<m1n1n22(n2!m!(n2+m)!)2ζ(3)=2∑0<n1<n20<m1n1n2m(n2!m!(n2+m)!)2+∑0<n1<n20<m1n1m2(n2!m!(n2+m)!)2
ζ(3)+∑0<n0<m1n3(n!m!(n+m)!)2=2∑0<n0<m1n2(n!m!(n+m)!)2+∑0<n0<m1nm(n!m!(n+m)!)2
112k−132k−152k+172k+192k−1112k−1132k+⋯=π22t⋆({1¯}2k−1)112k+1+132k+1−152k+1−172k+1+⋯=π22t⋆({1¯}2k)
ζ⋆({3}k)=3π4∑n=0∞1(2n+1)3k−1(2nn)24n∏m=n+1∞1(1+3(2n+1)2(2m+1)2)−38∑n=1∞1n3k(2nn)∏m=n+1∞1(1+3n2m2)
π2=∑n=0∞12n+1(2nn)(4n+42n+2)(3n+2n)26n+4+∑n=0∞14n+1(2nn)(4n2n)(3nn)26n+∑n=0∞14n+3(2nn)(4n+22n+1)(3n+1n)26n+2
∑0≤n(1(2n+1)3(3n+1n)−H2n−Hn(2n+1)2(3n+1n))=∑0<n(2n3(3nn)+74H2n−Hnn2(3nn))
∑n=0∞tanh((n+12)π)(n+12)3=π34∑n=0∞tanh((n+12)π)(n+12)7=7π7180
2π2log22=∑0<n1<n2<n3(2n1n1)n122n11n222n3n32(2n3n3)+2∑0<n1<n2<n31n1(2n2n2)n222n222n3n32(2n3n3)14ζ(1,3)−16t(1,3)=∑0<n1<n2<n31n122n2n22(2n2n2)(2n3n3)n322n3+2∑0<n1<n2≤n31n122n2n22(2n2n2)(−1)n2+n3n2+n314ζ(3)=∑0<n≤m1(n−12)22mm2(2mm)16t(1,3)=∑0<n1<n2≤n3(2n1n1)n122n11n2−1222n3n32(2n3n3)−∑0<n1<n2<n3(2n1n1)n122n11n222n3n32(2n3n3)
∑n=1∞∑m=1∞22nn2(2nn)22mm2(2mm)n!m!(n+m)!=π424∑0<n<m(2nn)n222n22mm2(2mm)=∑0<n<m22nn2(2nn)1m2
Ξ(k1,k2,…,kr):=∑0<n1<⋯<nr1n1k1⋯nr−1kr−1nrkr(a)nr−1nr−1!nr!(a)nr特にのとき特にr=1のとき,Ξ(k):=∑n=1∞n!nk(a)n重さk深さrの許容インデックス全体がなす集合をIr(k,r)とする。このとき次が成立する。(多重ゼータ値の和公式の一般化)Ξ(k)=∑k∈Ir(k,r)Ξ(k)
log2に収束する級数 log2=∑n=1∞1(2n−1)2(2nn)(4n2n)+∑n=1∞1n(2n−1)(2nn)(4n2n)
log2=∑n=1∞1(2n)224n(4n2n)(2nn)+∑n=1∞1n(2n−1)24n(4n2n)(2nn)一般化↓一般化
∑n=1∞12n(2n−2x−1)=∑n=1∞1(2n−2x−1)2(1−2x)2n2(1−x)2n(1−2x)4n(1−x)n2+∑n=1∞1n(2n−2x−1)(1−2x)2n2(1−x)2n(1−2x)4n(1−x)n2
∑n=1∞12n(2n−2x−1)=∑n=1∞1(2n)2(1−2x)2n2(1−x)2nn!2(1−2x)4n(1−x)n2(12−x)n2+∑n=1∞1n(2n−2x−1)(1−2x)2n2(1−x)2nn!2(1−2x)4n(1−x)n2(12−x)n2
任意の正整数の組(n,m)について次が成立する。∑n<k1k(k−12)(2kk)(2mm)(2k+2mk+m)−∑n<k1k(k−12)(2kk)22k=∑m<k1k(k−12)(2kk)(2nn)(2k+2nk+n)−∑m<k1k(k−12)(2kk)22k
22a(2aa)∑a≤n1≤⋯≤nr1n1(n1+12)⋯nr(nr+12)(2nrnr)22nr=∑0<n1≤n2<⋯<n2r−1≤n2r1n122n1(2nrnr)1n2+12(2n2n2)22n2⋯1n2r−122n2r−1(2n2r−1n2r−1)1n2r+12(2n2rn2r)22n2rn2r!a!(n2r+a)!
βn:=(2nn)22n∑0≤n<n1<⋯<nrβn31n13⋯nr3βnr3=∑0≤n<n1<⋯<n2r−1βn31n12βn1βn2n2⋯1n2r−32βn2r−3βn2r−2n2r−21n2r−13βn2r−13
k∨:Hoffman双対インデックスHN⋆(k;x):=∑1≤n1≤⋯≤na≤N1(n1−x)k1⋯(na−x)ka(−1)na−1(1−x)N(1−x)na(N−na)!GN⋆(k;x):=∑1≤n1≤⋯≤na≤N1(n1−x)k1⋯(na−x)ka(1−x)n1−1(n1−1)!このとき,次が成立する.HN⋆(k;x)=GN⋆(k∨;x)
k=(k1,…,kr):許容インデックスϵ=(ϵ1,…,ϵr)∈{0,1}rνa,b(ϵk):=∑0=n0<n1<⋯<nr∏i=1r1niki(ni2ni2−a2(1−b)ni−1ni−1!ni−1!2(1−a)ni−1(1+a)ni−1ni!(1−b)ni(1−a)ni(1+a)nini!2)ϵiこのとき,正整数a1,…,as,b1,…,bsと(ϵ1,…,ϵr)∈{0,1}rについて次が成立する。νa,b({0}a1−1,ϵ1,…,{0}as−1,ϵs{1}a1−1,b1+1,…,{1}as−1,bs+1)=νa,b({0}bs−1,ϵs,…,{0}b1−1,ϵ1{1}bs−1,as+1,…,{1}b1−1,a1+1)
k′:=((k↑)†)↓ζα,β,γ,δ(k):=Γ(β)Γ(α+γ)Γ(α+β+γ)∑0≤n1<⋯<nr(1−δ)n1n1!1(n1+γ)k1⋯(nr+γ)kr(α+γ)nr(α+β+γ)nrこのときζα,β,γ,δ(k)=ζδ,γ,β,α(k′)
π=∑0<k3k−1k(k−12)22k(4k2k)
∑0≤m≤n(2mm)224m1(2n+1)2=72πζ(3)∑0≤m≤n(2mm)224m1(2n+1)3=4πβ(2)2
∑n=0∞(2nn)2(4n2n)28n=2∑n=0∞(−1)n(2nn)326n=πΓ(58)2Γ(78)2
π316∑n=0∞(4n+1)(2nn)6212n=∑n=0∞(2nn)428n(2β(2)+∑m=1n24m(2m)2(2mm)2)
∑n=1∞26nn3(2nn)3(∑m=0n−1(2mm)326m)(∑k=0n−1(2kk)224k)=π52Γ(34)8
∑n=1∞(2nn)326n∑m=1n26mm3(2mm)3+2πΓ(34)4∑n=1∞(2nn)326n∑m=1n22mm2(2mm)=π63Γ(34)8−π4Γ(34)8
∑n=1∞26nn3(2nn)3(∑m=0n−1(2mm)224m)2−π∑n=1∞(2nn)326n∑m=1n22mm2(2mm)=8π2Γ(34)4β(2)
∑n=1∞(−1)n−126n(2n)3(2nn)3∑m=0n−1(2mm)224m=∑n=1∞(−1)n22n(2n)2(2nn)∑m=0n−1(−1)m(2nn)326n−2log(1+2)∑n=1∞(−1)n22n(2n)(2nn)∑m=0n−1(−1)m(2nn)326n
7ζ(3)=∑0≤n1<n21n1+123n2−1n2324n2(2n2n2)3−∑0<n1n324n(2nn)3
π46=∑0≤n1<n21(n1+12)23n2−1n2324n2(2n2n2)3−4∑0<n1<n21n123n2−1n2324n2(2n2n2)3
π46=∑0<m<n1m24nn3(2nn)2+∑0<m<n(2mm)m23n−1n324n(2nn)3+3∑0<n1<n2<n31n1(2n2n2)n23n3−1n3324n3(2n3n3)3
A(n):=sin(π4+nπ2)B(n):=cos(π4+nπ2)t⋆(k1,…,ki¯,…,kr):=∑0≤n1≤⋯≤nr(−1)ni(2n1+1)k1…(2nr+1)krζ⋆(k1,…,ki¯,…,kr):=∑0<n1≤⋯≤nr(−1)ni−1n1k1…nrkr
π4t⋆({1¯}2k−1)=∑n=0∞B(n)(2n+1)2kπ4t⋆({1¯}2k)=∑n=0∞A(n)(2n+1)2k+1
π12t⋆({3¯}2k−1)=∑n=0∞B(n)(2n+1)6k−21cosh(3π4(2n+1))+B(n)π12t⋆({3¯}2k)=∑n=0∞A(n)(2n+1)6k+11cosh(3π4(2n+1))+B(n)βn:=(2nn)22nζ⋆({1¯}2k−1)=∑n=1∞2B(n−1)n2k−1β[n2]ζ⋆({1¯}2k)=∑n=1∞2A(n−1)n2kβ[n2]
∑n=0∞48n2+32n+3n+12(2nn)(4n2n)2212n=162π∑0≤n1701n4+2754n3+1566n2+351n+22(n+12)3(3nn)339n=3243π∑0≤k5376k4+8704k3+4896k2+1056k+57(k+12)3(4k2k)3218k=10242π
ζ(2)=2∑0<n1n2(2nn)2−∑0<n<m(2nn)21m−8m3(2mm)3+23∑0<nsin(πn3)n2ζ(3)=92∑0<n1n3(2nn)2+32∑0<m<n(2mm)m21n−8n3(2nn)3
∑0<n(1n−3n(2nn)∑n<m1m2(2mm))=833∑0<nsin(πn3)n2∑0<n(1n2−3(2nn)∑n<m1m2(2mm))=π23−1233∑0<nsin(πn3)n2
∑0≤m<n24m(m+12)2(2mm)(2nn)(n+12)24n=169πβ(2)−359ζ(3)
643πβ(2)=∑0<m≤n1m(m−12)24m(2mm)(6n+1)(2nn)328n40963πβ(2)=24∑0≤n1n+12(2nn)228n+∑0<m≤n1m(m−12)24m(2mm)(42n+5)(2nn)3212n
π=∑0≤n1n+12(2nn)328n+∑0≤m<n1(m+12)2(6n+1)(2nn)328n83π=4∑0≤n1n+12(2nn)3212n+∑0≤m<n1(m+12)2(42n+5)(2nn)3212n
πΓ(14)4=1210⋅3∑0≤n(−1)n28672n5−14848n4+1600n3+32n2−8n−1(n−14)3133n(14)n2(712)n(1112)n(4n2n)3212nπΓ(34)4=1210⋅33∑0≤n(−1)n28672n5+56832n4+43584n3+16000n2+2760n+171(n+12)3(n+112)(n+512)133n(34)n2(112)n(512)n(4n2n)3212n
∫01(x−x)(x−x)(x−x)⋯dx=π26∫01(xx)(xx)(xx)⋯dx=π212∫01(x−12x)(x−12x)(x−12x)⋯dx=π26−(log2)2∫01(x−αx)(x−αx)(x−αx)⋯dx=1αLi2(α)∫01∫01(x−yx)(x−yx)(x−yx)⋯dxdy=ζ(3)
−132πΓ(58)2Γ(78)2=∑0≤m<n1m+12(−1)n(2n+12)(2nn)326nπ6=∑0≤m<n1(m+12)2(−1)n(2n+12)(2nn)326n+∑0≤m<n1m+12(−1)n(2nn)326n+3∑0≤n1<n2<n31(n1+12)(n2+12)(−1)n3(2n3+12)(2n3n3)326n3
13ζ(2,3)=2∑0<n1<n2(2n1n1)n13n22(2n2n2)−3∑0<n1<n2<n3(2n2n2)n12n2n32(2n3n3)
8πβ(2)−64πβ(4)=2∑0≤n1<n224n1(n1+12)4(2n1n1)(6n2+1)(2n2n2)328n2−3∑0≤n1<n2<n31(n1+12)224n2(n2+12)2(2n2n2)(6n3+1)(2n3n3)328n3
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。