前の記事
で, $q$超幾何級数の和公式をまとめた. 前の記事の記法をそのまま用いるとして, 今回は両側$q$超幾何級数
\begin{align}
\BQ{r}s{a_1,\dots,a_r}{b_1,\dots,b_r}{q;x}&=\BQ{r}s{a_1,\dots,a_r}{b_1,\dots,b_r}{x}\\
&=\sum_{n\in\ZZ}\frac{(a_1,\dots,a_r;q)_n}{(b_1,\dots,b_s;q)_n}\left((-1)^nq^{\binom n2}\right)^{s-r}x^n
\end{align}
の和公式や変換公式をまとめたいと思う.
\begin{align} \BQ01{-}{0}x=(q,x,q/x;q)_{\infty} \end{align}
\begin{align} \BQ01{-}bx=\frac{(q,x,q/x;q)_{\infty}}{(b,b/x;q)_{\infty}} \end{align}
\begin{align} \BQ11{a}bx=\frac{(ax,q,b/a,q/ax;q)_{\infty}}{(x,b,q/a,b/ax;q)_{\infty}} \end{align}
\begin{align} &\BQ22{b,c}{aq/b,aq/c}{-\frac{aq}{bc}}\\ &=\frac{(aq/bc;q)_{\infty}(q^2,aq,q/a,aq^2/b^2,aq/c^2;q^2)_{\infty}}{(aq/b,aq/c,q/b,q/c,-aq/bc;q)_{\infty}} \end{align}
\begin{align} \BQ22{q/a,b}{d,bq}{a}&=\frac{(d/b,ab,q,q;q)_{\infty}}{(q/b,a,d,bq;q)_{\infty}} \end{align}
\begin{align} &\BQ22{a,b}{c,d}{\frac{cd}{abq}}-\frac eq\frac{(e/a,e/b,q/c,q/d;q)_{\infty}}{(q/a,q/b,e/c,e/d;q)_{\infty}}\BQ22{aq/e,bq/e}{cq/e,dq/e}{\frac{cd}{abq}}\\ &=\frac{(q,e,q/e,c/a,c/b,d/a,d/b,cd/eq,eq^2/cd;q)_{\infty}}{(c,d,q/a,q/b,c/e,eq/c,d/e,eq/d,cd/abq;q)_{\infty}}\\ &\BQ22{a,b}{c,d}{q}-\frac eq\frac{(ce/q,de/q,a,b;q)_{\infty}}{(c,d,ae/q,be/q;q)_{\infty}}\BQ22{ae/q,be/q}{ce/q,de/q}{q}\\ &=\frac{(q,e,q/e,c/a,c/b,d/a,d/b,q/abe,abe;q)_{\infty}}{(c,d,q/a,q/b,q/ae,ae,q/be,be,cd/abq;q)_{\infty}} \end{align}
\begin{align} \BQ33{b,c,d}{q/b,q/c,q/d}{\frac{q}{bcd}}&=\frac{(q,q/bc,q/bd,q/cd;q)_{\infty}}{(q/b,q/c,q/d,q/bcd;q)_{\infty}}\\ \BQ33{b,c,d}{q^2/b,q^2/c,q^2/d}{\frac{q^2}{bcd}}&=\frac{(q,q^2/bc,q^2/bd,q^2/cd;q)_{\infty}}{(q^2/b,q^2/c,q^2/d,q^2/bcd;q)_{\infty}} \end{align}
$abcq^2=def$のとき
\begin{align}
&\BQ33{a,b,c}{d,e,f}q\\
&=a\frac{(q,aq/b,aq/c,q/d,q/e,q/f;q)_{\infty}}{(aq/d,aq/e,aq/f,q/a,q/b,q/c;q)_{\infty}}\Q32{aq/d,aq/e,aq/f}{aq/b,aq/c}q\\
&\qquad+\frac qd\frac{(a,b,c,eq/d,fq/d,q;q)_{\infty}}{(d,e,f,aq/d,bq/d,cq/d;q)_{\infty}}\Q32{aq/d,bq/d,cq/d}{eq/d,fq/d}q\\
&\qquad+\frac{(q,q/d,aq^2/ef,a,ef/aq,e/b,e/c,f/b,f/c;q)_{\infty}}{(aq/e,aq/f,q/b,q/c,e,f,aq/d,bq/d,cq/d;q)_{\infty}}
\end{align}
\begin{align} &\BQ44{-\sqrt aq,b,c,d}{-\sqrt a,aq/b,aq/c,aq/d}{\frac{a^{\frac 32}q}{bcd}}\\ &=\frac{(q,aq,q/a,aq/bc,aq/bd,aq/cd,\sqrt aq/b,\sqrt aq/c,\sqrt aq/d;q)_{\infty}}{(aq/b,aq/c,aq/d,q/b,q/c,q/d,\sqrt aq,q/\sqrt a,a^{\frac 32}q/bcd;q)_{\infty}} \end{align}
\begin{align} &\BQ44{a,c,\sqrt{bdq},-\sqrt{bdq}}{bq,dq,\sqrt{acq},-\sqrt{acq}}q\\ &=\frac{(a,1/d;q)_{\infty}}{(bq,q/c;q)_{\infty}}\frac{(q^2,bcq,q/bc,bq^2/c,ac/bd;q^2)_{\infty}}{(acq,a/b,a/d,c/d,q/bd;q^2)_{\infty}}\\ &\qquad+\frac{1/d}{1-a/d}\frac{(a,c;q)_{\infty}}{(bq,dq;q)_{\infty}}\frac{(bdq;q^2)_{\infty}}{(acq;q^2)_{\infty}}\sum_{0\leq n}\frac{(bq^2/c;q^2)_n}{(aq^2/d;q^2)_n}\left(\frac cd\right)^n\\ &\qquad+\frac{a}{1-a/d}\frac{(1/b,1/d;q)_{\infty}}{(q/a,q/c;q)_{\infty}}\frac{(q/ac;q^2)_{\infty}}{(q/bd;q^2)_{\infty}}\sum_{0\leq n}\frac{(bq^2/c;q^2)_n}{(aq^2/d;q^2)_n}\left(\frac ab\right)^n \end{align}
$bcde=q^{n+1}$のとき, 非負整数$n$に対して,
\begin{align}
\BQ55{b,c,d,e,q^{-n}}{q/b,q/c,q/d,q/e,q^{n+1}}q&=\frac{(q,q/bc,q/bd,q/cd;q)_n}{(q/b,q/c,q/d,q/bcd;q)_n}\\
\end{align}
$bcde=q^{n+3}$のとき, 非負整数$n$に対して,
\begin{align}
\BQ55{b,c,d,e,q^{-n}}{q^2/b,q^2/c,q^2/d,q^2/e,q^{n+2}}q&=\frac{(q;q)_{n+1}(q^2/bc,q^2/bd,q^2/cd;q)_n}{(q^2/b,q^2/c,q^2/d,q^2/bcd;q)_n}
\end{align}
\begin{align} &\BQ55{\sqrt aq,-\sqrt aq,b,c,d}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d}{\frac{a^{\frac 32}\sqrt q}{bcd}}\\ &=\frac{(q,aq,q/a,aq/bc,aq/bd,aq/cd,\sqrt{aq}/b,\sqrt{aq}/c,\sqrt{aq}/d;q)_{\infty}}{(aq/b,aq/c,aq/d,q/b,q/c,q/d,\sqrt{aq},\sqrt{q/a},a^{\frac 32}\sqrt q/bcd;q)_{\infty}} \end{align}
\begin{align} \BQ56{\sqrt aq,-\sqrt aq,b,c,d}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,0}{\frac{a^2q}{bcd}}&=\frac{(q,aq,q/a,aq/bc,aq/bd,aq/cd;q)_{\infty}}{(aq/b,aq/c,aq/d,q/b,q/c,q/d;q)_{\infty}} \end{align}
\begin{align} &\BQ66{\sqrt aq,-\sqrt aq,b,c,d,e}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e}{\frac{a^2q}{bcde}}\\ &=\frac{(q,aq,q/a,aq/bc,aq/bd,aq/be,aq/cd,aq/ce,aq/de;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e,a^2q/bcde;q)_{\infty}} \end{align}
\begin{align} \BQ22{a,b}{c,d}{x}&=\frac{(dq/abx,c/b,ax,d/a;q)_{\infty}}{(cd/abx,q/b,x,d;q)_{\infty}}\BQ22{a,abx/d}{ax,c}{\frac da}\\ &=\frac{(ax,bx,cq/abx,dq/abx;q)_{\infty}}{(q/a,q/b,c,d;q)_{\infty}}\BQ22{abx/c,abx/d}{ax,bx}{\frac{cd}{abx}} \end{align}
\begin{align} \BQ22{e,f}{aq/c,aq/d}{\frac{aq}{ef}}&=\frac{(q/c,q/d,aq/e,aq/f;q)_{\infty}}{(a,q/a,aq/cd,aq/ef;q)_{\infty}}\sum_{n\in\ZZ}\frac{(1-aq^{2n})(c,d,e,f;q)_n}{(aq/c,aq/d,aq/e,aq/f;q)_n}\left(\frac{a^3q}{cdef}\right)^nq^{n^2} \end{align}
\begin{align} &\BQ22{b,c}{aq/b,aq/c}{\frac{axq}{bc}}\\ &=\frac{(q/a,aq/bc,q/bx,q/cx,xq,ax^2q;q)_{\infty}}{(q/b,q/c,aq/bcx,q/ax,axq,x^2q;q)_{\infty}}\\ &\qquad\cdot\BQ88{q\sqrt{ax},-q\sqrt{ax},\sqrt a,-\sqrt a,\sqrt{aq},-\sqrt{aq},bx,cx}{\sqrt{ax},-\sqrt{ax},xq\sqrt a,-xq\sqrt a,x\sqrt{aq},-x\sqrt{aq},aq/b,aq/c}{\frac{axq}{bc}} \end{align}
\begin{align} &\frac{(aq/b,aq/c,q/e,q/f,aq/bd,aq/cd;q)_{\infty}}{(a^2q/bcd;q)_{\infty}}\BQ33{a^2q/bcd,e,f}{aq/b,aq/c,aq/d}{\frac{aq}{ef}}\\ &\qquad+\frac{(q,a^2q^2/bcde,a^2q^2/bcdf,aq/b,aq/c,b/a,c/a,d/a;q)_{\infty}}{(a^2q^2/bcd,bcd/a^2q,aq/bc;q)_{\infty}}\\ &\qquad\cdot\Q32{aq/bc,aq/bd,aq/cd}{a^2q^2/bcde,a^2q^2/bcdf}q\\ &=\frac{(aq/e,aq/f,q/b,q/c,aq/de,aq/df;q)_{\infty}}{(a^2q/def;q)_{\infty}}\BQ33{a^2q/def,b,c}{aq/d,aq/e,aq/f}{\frac{aq}{bc}}\\ &\qquad+\frac{(q,a^2q^2/bdef,a^2q^2/cdef,aq/e,aq/f,d/a,e/a,f/a;q)_{\infty}}{(a^2q^2/def,def/a^2q,aq/ef;q)_{\infty}}\\ &\qquad\cdot\Q32{aq/de,aq/df,aq/ef}{a^2q^2/bdef,a^2q^2/cdef}q \end{align}
\begin{align}
&\frac{(aq/b,aq/c,aq/d,q/e,q/f;q)_{\infty}}{(a^2q/bcd;q)_{\infty}}\BQ33{a^2q/bcd,e,f}{aq/b,aq/c,aq/d}{\frac{aq}{ef}}\\
&=\frac{(q/b,q/c,q/d,aq/e,aq/f;q)_{\infty}}{(aq/bcd;q)_{\infty}}\BQ33{b,c,d}{bcd/a,aq/e,aq/f}q\\
&\qquad+\frac{(q,a,q/a,bc/a,bd/a,cd/a,a^2q^2/bcde,a^2q^2/bcdf;q)_{\infty}}{(aq^2/bcd,bcd/aq,a^2q/bcd,bcd/a^2;q)_{\infty}}\Q32{aq/bc,aq/bd,aq/cd}{a^2q^2/bcde,a^2q^2/bcdf}q
\end{align}
$a^3q=bcdefg$のとき,
\begin{align}
&\frac{(q/b,q/c,q/d,aq/e,aq/f,aq/g;q)_{\infty}}{(a,q/a,a^2q/efg,aq/bcd;q)_{\infty}}\BQ33{b,c,d}{aq/e,aq/f,aq/g}q\\
&\qquad-\frac{(aq/b,aq/c,aq/d,q/e,q/f,q/g;q)_{\infty}}{(a,q/a,a^2q/bcd,aq/efg;q)_{\infty}}\BQ33{e,f,g}{aq/b,aq/c,aq/d}q\\
&=\frac{(ef/a,eg/a,fg/a,cdq/a,bdq/a,bcq/a;q)_{\infty}}{(aq^2/efg,efg/aq,a^2q/efg,efg/a^2;q)_{\infty}}\BQ33{aq/ef,aq/eg,aq/fg}{cdq/a,bdq/a,bcq/a}{q}
\end{align}
\begin{align} &\frac{(aq/b,aq/c,aq/d,q/e,q/f,q/g;q)_{\infty}}{(a^2q/bcd,aq/efg;q)_{\infty}}\BQ44{a^2q/bcd,e,f,g}{efg/a,aq/b,aq/c,aq/d}q\\ &\qquad+\frac{(q,a,q/a,ef/a,eg/a,fg/a,a^2q^2/befg,a^2q^2/cefg,a^2q^2/defg;q)_{\infty}}{(aq^2/efg,efg/aq,a^2q/efg,efg/a^2,a^3q^2/bcdefg;q)_{\infty}}\\ &\qquad\cdot\Q43{a^3q^2/bcdefg,aq/ef,aq/eg,aq/fg}{a^2q^2/befg,a^2q^2/cefg,a^2q^2/defg}q\\ &=\frac{(q/b,q/c,q/d,aq/e,aq/f,aq/g;q)_{\infty}}{(a^2q/efg,aq/bcd;q)_{\infty}}\BQ44{a^2q/efg,b,c,d}{bcd/a,aq/e,aq/f,aq/g}q\\ &\qquad+\frac{(q,a,q/a,bc/a,bd/a,cd/a,a^2q^2/bcde,a^2q^2/bcdf,a^2q^2/bcdg;q)_{\infty}}{(aq^2/bcd,bcd/aq,a^2q/bcd,bcd/a^2,a^3q^2/bcdefg;q)_{\infty}}\\ &\qquad\cdot\Q43{a^3q^2/bcdefg,aq/bc,aq/bd,aq/cd}{a^2q^2/bcde,a^2q^2/bcdf,a^2q^2/bcdg}q \end{align}
\begin{align} &\frac{(aq/b,aq/c,aq/e,aq/f,q/b,q/c,q/d,q/e,q/f;q)_{\infty}}{(aq,q/a,aq/bc,aq/bd,aq/cd,aq/ef;q)_{\infty}}\\ &\qquad\cdot\BQ78{\sqrt aq,-\sqrt aq,b,c,d,e,f}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f,0}{\frac{a^3q^2}{bcdef}}\\ &=\frac{(aq/b,aq/c,q/e,q/f;q)_{\infty}}{(a^2q/bcd;q)_{\infty}}\BQ33{a^2q/bcd,e,f}{aq/b,aq/c,aq/d}{\frac{aq}{ef}}\\ &\qquad+\frac{(q,a^2q^2/bcde,a^2q^2/bcdf,aq/b,aq/c,b/a,c/a,d/a;q)_{\infty}}{(a^2q^2/bcd,bcd/a^2q,aq/bc,aq/bd,aq/cd;q)_{\infty}}\\ &\qquad\cdot\Q32{aq/bc,aq/bd,aq/cd}{a^2q^2/bcde,a^2q^2/bcdf}q \end{align}
$\mu=bcde/aq$とするとき,
\begin{align}
&\BQ88{\sqrt aq,-\sqrt aq,b,c,d,e,f,g}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f,aq/g}{\frac{a^3q^2}{bcdefg}}\\
&=\frac{(aq,q/a,aq/cd,aq/ce,aq/de,aq/fg,b/a,\mu q/c,\mu q/d,\mu q/e,aq/\mu f,aq/\mu g;q)_{\infty}}{(q/f,q/g,aq/c,aq/d,aq/e,bc/a,bd/a,be/a,b/\mu,\mu q,q/\mu,a^2q/\mu fg;q)_{\infty}}\\
&\qquad\cdot\BQ88{\sqrt{\mu}q,-\sqrt{\mu}q,b,c,d,e,\mu f/a,\mu g/a}{\sqrt{\mu},-\sqrt{\mu},\mu q/b,\mu q/c,\mu q/e,aq/f,aq/g}{\frac{aq}{fg}}\\
&\qquad+\frac{(q,aq,q/a,c,d,e,bq/c,bq/d,bq/e,bq/f,bq/g,aq/bf,aq/bg,bcde/a^2q,a^2q^2/bcde;q)_{\infty}}{(q/f,q/g,aq/b,aq/c,aq/d,aq/e,aq/f,aq/g,bc/a,bd/a,be/a,q/b,b^2q/a,cde/aq,a^2q/cde;q)_{\infty}}\\
&\qquad\cdot\Q87{b^2/a,\sqrt{\frac{b^2}a}q,-\sqrt{\frac{b^2}a}q,bcd/a,bd/a,be/a,bf/a,bg/a}{\sqrt{\frac{b^2}a},-\sqrt{\frac{b^2}a},bq/c,bq/d,bq/e,bq/f,bq/g}{\frac{a^3q^2}{bcdefg}}
\end{align}
\begin{align}
&\frac{(aq/e,aq/f,aq/g,q/b,q/c,q/d;q)_{\infty}}{(aq,q/a,aq/bc,aq/bd,aq/cd,aq/ef,aq/eg,aq/fg;q)_{\infty}}\\
&\qquad\cdot\BQ88{\sqrt aq,-\sqrt aq,b,c,d,e,f,g}{\sqrt a,-\sqrt a,aq/b,aq/c,aq/d,aq/e,aq/f,aq/g}{\frac{a^3q^2}{bcdefg}}\\
&=\frac 1{(a^2q/bcd,aq/efg;q)_{\infty}}\BQ44{a^2q/bcd,e,f,g}{efg/a,aq/b,aq/c,aq/d}q\\
&\qquad+\frac{(q,a^2q^2/bcde,a^2q^2/bcdf,a^2q^2/bcdg,b/a,c/a,d/a;q)_{\infty}}{(a^2q^2/bcd,bcd/a^2q,a^3q/bcdefg,aq/bc,aq/bd,aq/cd,q/e,q/f,q/g;q)_{\infty}}\\
&\qquad\cdot\Q43{a^3q^2/bcdefg,aq/bc,aq/bd,aq/cd}{a^2q^2/bcde,a^2q^2/bcdf,a^2q^2/bcdg}q\\
&\qquad+\frac{(q,e,f,g,a^2q^2/befg,a^2q^2/cefg,a^2q^2/defg;q)_{\infty}}{(aq^2/efg,efg/aq,a^3q^2/bcdefg,aq/b,aq/c,aq/d,aq/ef,aq/eg,aq/fg;q)_{\infty}}\\
&\qquad\cdot\Q43{a^3q^2/bcdefg,aq/ef,aq/eg,aq/fg}{a^2q^2/befg,a^2q^2/cefg,a^2q^2/defg}q
\end{align}
$w=a^2q/cde,\quad a^3q^2=bcdefgh$とするとき,
\begin{align}
&\BQ44{a,f,g,h}{aq/b,aq/c,aq/d,aq/e}q\\
&=a\frac{(q,aq/f,aq/g,aq/h,b/a,c/a,d/a,e/a;q)_{\infty}}{(b,c,d,e,q/a,q/f,q/g,q/h;q)_{\infty}}\Q43{b,c,d,e}{aq/f,aq/g,aq/h}q\\
&\qquad+\frac ba\frac{(q,a,f,g,h,bq/c,bq/d,bq/e;q)_{\infty}}{(b,aq/b,aq/c,aq/d,aq/e,bf/a,bg/a,bh/a;q)_{\infty}}\Q43{b,bf/a,bg/a,bh/a}{bq/c,bq/d,bq/e}q\\
&\qquad+\frac{(a,b/a,wq/f,wq/g,wq/h,aq/wc,aq/wd,aq/we;q)_{\infty}}{(wq,q/w,c,d,e,bf/a,bg/a,bh/a;q)_{\infty}}\\
&\qquad\cdot\BQ88{\sqrt wq,-\sqrt wq,wc/a,wd/a,we/a,f,g,h}{\sqrt w,-\sqrt w,aq/c,aq/d,aq/e,wq/f,wq/g,wq/h}b
\end{align}
両側$q$超幾何級数に関しては, 通常の$q$超幾何級数に関する 和公式 や 変換公式 と比べてまだまだ分かっていないことも多い. それらは今後の研究課題である.